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Abstract

An important part of cooking with computers is us-
ing statistical methods to create new, flavorful in-
gredient combinations. The flavor pairing hypoth-
esis states that culinary ingredients with common
chemical flavor components combine well to pro-
duce pleasant dishes. It has been recently shown
that this design principle is a basis for modern
Western cuisine and is reversed for Asian cuisine.

Such data-driven analysis compares the chemistry
of ingredients to ingredient sets found in recipes.
However, analytics-based generation of novel fla-
vor profiles can only be as good as the underlying
chemical and recipe data. Incomplete, inaccurate,
and irrelevant data may degrade flavor pairing in-
ferences. Chemical data on flavor compounds is in-
complete due to the nature of the experiments that
must be conducted to obtain it. Recipe data may
have issues due to text parsing errors, imprecision
in textual descriptions of ingredients, and the fact
that the same ingredient may be known by differ-
ent names in different recipes. Moreover, the pro-
cess of matching ingredients in chemical data and
recipe data may be fraught with mistakes. Much of
the ‘dirtiness’ of the data cannot be cleansed even
with manual curation.

In this work, we collect a new data set of recipes
from Medieval Europe before the Columbian Ex-
change and investigate the flavor pairing hypothesis
historically. To investigate the role of data incom-
pleteness and error as part of this hypothesis test-
ing, we use two separate chemical compound data
sets with different levels of cleanliness. Notably,
the different data sets give conflicting conclusions
about the flavor pairing hypothesis in Medieval Eu-
rope. As a contribution towards social science, we
obtain inferences about the evolution of culinary
arts when many new ingredients are suddenly made
available.

“Computational creativity is a subfield of artificial intelli-
gence research ...where we build and work with computa-
tional systems that create art[i]facts and ideas. These systems

are usually, but not exclusively, applied in domains histor-
ically associated with creative people, such as mathematics
and science, poetry and story telling, musical composition
and performance, video game, architectural, industrial and
graphic design, the visual, and even the culinary, arts” [Colton
and Wiggins, 2012].

1 Introduction

The cooking of food and human evolution are intertwined.
One could go so far as to argue that it is cooking that makes us
human. We are naturally drawn to foods high in fat and sugar
because of the nourishment we received from such foods dur-
ing our evolution in resource-poor environments. However,
we are also drawn to foods with complex layers of balanced
flavors composed through the art and science of cooking. It is
these foods that we find delectable, delightful, and delicious.

Human flavor perception is very complicated, involving a
variety of external sensory stimuli and internal states [Shep-
herd, 2006; Lim and Johnson, 2012]. Not only does it involve
the five classical senses, but also sensing through the gut, and
the emotional, memory-related, motivational, and linguistic
aspects of food. In addition to the basic tastes: sweet, sour,
salty, bitter, and umami, the smell of foods is the key contrib-
utor to flavor perception, which is in turn a property of the
chemical compounds contained in the ingredients [Burdock,
2004]. There are typically tens to hundreds of different flavor
compounds per food ingredient [Ahn et al., 2011].

Other contributors to flavor perception among the classical
senses are the temperature, texture, astringency, and creami-
ness of the food; the color and shape of food; and the sound
that the food makes. The digestive system detects the auto-
nomic and metabolic properties of the food. Moreover, there
are emotion, motivation, and craving circuits in the brain that
influence flavor perception, which are in turn related to lan-
guage, feeding, conscious flavor perception, and memory cir-
cuits. Furthermore, effects beyond the food itself, including
social and contextual ones, influence flavor perception [King
et al., 2013].

The key quality of foods and the one we focus on in this
paper is the set of flavor compounds that they contain, which
is a union of the flavor compounds of the constituent ingre-
dients. Recent work has shown that olfactory pleasantness
can be predicted based on the structure of flavor compounds
[Khan er al., 2007; Lapid et al., 2008; Haddad et al., 2010].



We note that cooking ingredients together can influence fla-
vor perception as proteins, fats and starches bind certain fla-
vor compounds and certain compounds may evaporate away
or be chemically changed, but this is a second-order effect
which we do not study in this work [Guichard, 2002].

One of the main guiding principles in putting together a
recipe or a dish is flavor pairing. It is believed that ingre-
dients that share many flavor compounds go well together.
This flavor pairing hypothesis arose when the chef Heston
Blumenthal found caviar and white chocolate to go well to-
gether, and investigated the basic chemical reason for why
this is a good pairing [Blumenthal, 2008]. The flavor pairing
hypothesis has been scientifically studied for several modern
cuisines and found to hold strongly for Western cuisine, but
to be almost opposite in East Asian cuisine [Ahn ez al., 2011].

In interviews that we conducted with professional chef in-
structors from the Institute of Culinary Education, we found
that cutting-edge chefs today do truly think in terms of pairs
or triplets of ingredients when coming up with new recipes.
While they are not explicit about the chemistry of flavor com-
pounds, they do draw on their mental databases of flavors and
combinations to pair ingredients. They also draw upon other
types of similarities between ingredients, such as being grown
in the same season of the year or in the same region of the
world.

One way in which we can use computers in cooking is
as an aid in coming up with new ingredient pairings that
may lie outside of the chef’s mental repository. Having a
machine system generate completely new flavor combina-
tions that have never existed before is a culinary applica-
tion of computational creativity [Bhattacharjya et al., 2012;
Morris et al., 2012; Veeramachaneni et al., 2012; Varshney
et al., 2013]. Such a culinary computational creativity sys-
tem or synthetic gastronomist depends critically on its data
repository (just like human culinary creators).

The quality of data (or lack thereof) is a prevalent is-
sue in almost all fields of analytics [Kim et al, 2003;
De Veaux and Hand, 2005; Wang et al., 2012]. Here we list
several aspects of this issue as they specifically pertain to the
culinary domain approached with computers. One issue is
resolving the names of ingredients that refer to the same en-
tity, e.g. ‘emmental,’ ‘emmenthal’ and ‘emmenthaler’; ‘bow
tie pasta,” ‘bowtie pasta’ and ‘farfalle’; ‘cilantro,” ‘coriander’
and ‘dhania’; ‘New Mexico red chile’ and ‘red New Mexico
chile’; and ‘achiote, ‘annatto’ and ‘annatto seed.” In parsing
and analyzing semi-structured recipe text, there can be issues
in determining what the actual ingredient is, e.g. in ‘my low-
carb catsup, and other aspects of data dirtiness arising from
imperfect text analytics.

Moreover, the analytical chemistry experiments conducted
to determine the flavor compounds present in a food ingredi-
ent are far from perfect and repositories far from complete.
Thermal desorption—gas chromatography—mass spectrometry
is the typical technique used to identify and sometimes quan-
tify volatile flavor compounds in foods and beverages, but
also in many forensics, monitoring, and other applications.
Experiments have not been conducted and verified for every
possible food ingredient, which presents a missing data lim-
itation. Also, many compounds occur in trace amounts in

foods; this contributes to false alarm and missed detection
errors in chemical analysis. Moreover, matching food ingre-
dients in recipes to food ingredients that have been chemi-
cally analyzed is another process that can introduce error and
incompleteness. Thus overall, recipe, ingredient, and flavor
compound data is plagued by various kinds of data dirtiness.

In order to cook with computers, specifically by having the
computer use the flavor compound pairing hypothesis to cre-
ate new sets of ingredients in recipes, we must understand the
effect of data dirtiness. Towards that end, in this paper we ob-
tain two independent data sets of flavor compound data hav-
ing different levels of completeness and accuracy, and com-
pile a completely new corpus of recipes from the Late Middle
Ages that has not been analyzed before. We test the flavor
pairing hypothesis twice using this corpus: once with each
flavor compound data set. With one data set we see a posi-
tive confirmation of the flavor pairing hypothesis that is off
the charts, but see an opposite result using the other data set.
These conflicting conclusions arising from differences in data
quality are quite notable and must be scrutinized in the pro-
cess of cooking with computers.

A second contribution of our work beyond understanding
dirty data when cooking with computers is a statement about
the evolution of cuisine [Kinouchi et al., 2008]. The me-
dieval period represents an age just before the set of possi-
ble ingredients for European cooking increased dramatically.
In the age of discovery that followed, European exploration
of the Americas initiated the Columbian Exchange [Crosby,
1972], the transfer of animals, plants, bacteria, viruses, and
culture between the continents. This transfer represents the
most significant global event in terms of agriculture and cook-
ing because it injected many now-common ingredients such
as tomatoes and potatoes into Eurasian and African cuisine.
When compared to modern Western cuisine using the same
flavor compound data set, we find that the level of flavor pair-
ing is approximately the same as in medieval cuisine, but that
the ingredients available do not lend themselves as much to
chemical pairing.

The remainder of this paper is organized as follows. In
Section 2, we discuss the flavor pairing hypothesis in greater
depth and describe the statistical methodology for testing it
and the data required for such evaluation. Then we discuss
the medieval period in Europe and the Columbian Exchange
in Section 3. Section 4 is devoted to empirical methodology
and results: testing flavor pairing on medieval recipes using
two different flavor compound data sets. The main result in
this section is that data quality issues can yield conflicting
inferences. We provide discussion and conclude in Section 5.

2 Flavor Pairing Hypothesis Testing

As mentioned in the introduction, flavor pairing is a key con-
cept in culinary arts that can be examined scientifically by
investigating the chemical flavor compounds that are compo-
nents of food ingredients. In this section, we discuss the dif-
ferent aspects of testing and quantifying the extent to which
ingredients with common flavor compounds go well together.



2.1 Chemical Components

A strong determinant of the flavor of foods is the aromatic
compounds that reach the olfactory system, either through the
nose or through retro-olfaction. Humans are adept at detect-
ing even trace amounts of these compounds and they have a
great effect on hedonic perception. Chemically, flavor com-
pounds come from groups such as acetals, acids, alcohols,
aldehydes, esters, furans, hydrocarbons, ketones, lactones,
and phenols.

The processes by which one can determine the flavor com-
ponents of a food are a branch of analytical chemistry. The
typical experiment involves heating the food to release the
flavor compounds into a vapor. This gas is then passed
through a gas chromatograph, which separates different types
of molecules of the gas based on the time it takes them to
travel through a capillary. The separated gas molecules are
then analyzed using a mass spectrometer, which ionizes the
molecules and measures mass-to-charge ratios to determine
the elemental composition.

In such a manner, the flavor compounds that are present in
a food dish, or more typically food ingredient, are identified.
However, when many different flavor compounds are present
in small quantities, the experiments generally have some false
alarms and some missed detections. In any case, the result
of the analytical chemistry is a list of contained compounds
for the food ingredient under consideration. In our work, we
consider two flavor compound databases: the Volatile Com-
pounds in Food 14.1 database (VCF) and Fenaroli’s Hand-
book of Flavor Ingredients as processed and released in [Ahn
etal.,2011].

2.2 Recipe Collections

Recipes in cookbooks represent the culinary best practices of
a culture. As such, when taking a data-driven approach to
understanding pairing, they also represent sets of ingredients
that are flavorful together. Modern recipes list ingredients,
but also quantities and instructions for preparation. In the
medieval period, recipes were primarily only the former. For
the purposes of analyzing pairing, it is only the set of ingre-
dients that is of importance. If the flavor pairing hypothesis
holds, then sets of ingredients in actual recipes should have,
on average, more shared flavor compounds than any random
set of ingredients. It is such a test that is proposed in [Ahn et
al., 2011] and that we conduct in this work.

We note that rather than using a large-scale statistical
methodology with the foundational assumption that recipes in
cookbooks represent the distillation of what people like and
dislike, another approach is experimental. In a very small-
scale sensory testing experiment, twenty-one food pairings
involving pear, tomato, potato, chocolate, beef, cauliflower,
and anise were made into purées and tested using human fla-
vor perception experiments. Combinations with strong fla-
vor pairing according to the VCF database were not necessar-
ily the best rated by undergraduate test subjects [Kort ez al.,
2010].

In this paper, we compile a corpus of recipes from Me-
dieval Europe and analyze the flavor pairing hypothesis
within this new collection. There are some notable prob-
lems with drawing conclusions based on recipes in cookbooks

from the time if one’s goal is to understand daily life in me-
dieval times. Most notably, the cookbooks are of wealthy
landowners, and thus do not necessarily reflect the diet of the
poor or middle class. Also, the connection between recipes
and what was actually cooked is open to question. However,
our goal is to understand the most flavorful foods that were
being concocted in that time and place, and recipes are an
excellent source for that purpose.

2.3 Statistical Methodology

As described in [Ahn er al., 2011], the primary calculation to
understand the flavor pairing hypothesis is to compute the av-
erage number of shared flavor compounds among the ingredi-
ents in a recipe R. Let R be a set of n g different ingredients.
Then the average number of shared compounds is:
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where C is the set of flavor compounds in ingredient ¢ and
Cj is the set of flavor compounds in ingredient j. The mean
of N(R) across the corpus of recipes, which we denote N,
represents the degree to which flavor pairing exists overall.

Then in order to understand whether N, is indicative of
ingredients with high compound sharing also often appearing
together in recipes (and thus implicitly tasting good together),
we must compare N, for the recipe corpus under consider-
ation to a null hypothesis, specifically the value of Ny for
randomly generated sets of ingredients from the same overall
universe of ingredients and probability distribution. Denoting
the average sharing for the true corpus of recipes as N**! and
for a randomly generate corpus as N4, the difference

ANS — Ngeal . N;"and (2)

if positive indicates that flavor pairing is a strong influence in
the real recipes under consideration, if close to zero indicates
no relationship between flavor compounds and recipes, and if
negative indicates that recipes tend to include ingredients that
spcifically do not share flavor compounds.

Additionally, as discussed extensively in [Ahn et al., 20111,
it is possible to calculate how much an individual ingredient
¢ contributes to AN, as follows:
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where N, is the number of recipes in the corpus, f; is the
number of occurrences of ingredient i, and 7. is the average
number of ingredients per recipe in the corpus.

3 Medieval Times and the Columbian
Exchange

The medieval period in Europe, also known as the Middle
Ages, is the time between the collapse of the Western Ro-
man Empire and the beginning of the Renaissance. The exact
dates are a bit hard to pin down, and strongly depend on what
part of Europe is being considered. For example the fifteenth
century is considered as the Renaissance in Italy, but is the
Late Middle Ages in England.



Cereal grains (barley, oats, and rye for the poor and wheat
for the wealthy) were the main staples and were prepared as
bread, porridge, gruel, and pasta. The staples were supple-
mented by vegetables. Meat was more expensive and eaten
less, with pork and chicken being more prevalent than beef.
Fish was common, especially cod and herring, but also other
saltwater and freshwater fish. Wild game was common only
among the nobility.

A misconception about that time period is that spices were
used to cover the taste of spoiled meat. This myth has its
origins in Victorian-era England and has no basis in fact.
Such a practice would have been unfeasible in terms of health
(it would have killed the people), economics (it would have
been too expensive), and logistics (it would have required vast
amounts of meat to be kept hanging for days).

The medieval period was an age prior to the exploration
of the Americas. Once the New World had been discovered,
many new ingredients made their way to Eurasia and vice
versa. This transfer of foods, along with the transfer of dis-
eases and culture is known as the Columbian Exchange af-
ter Christopher Columbus [Crosby, 1972; Nunn and Qian,
2010]. Some key ingredients that were absent in the Old
World before the Columbian Exchange include corn, pota-
toes, cassava, sweet potatoes, tomatoes, sunflower seeds, ca-
cao beans, pineapples, peanuts, eggplants, tobacco, vanilla,
and capsicum peppers (which are the ancestors of cayenne
peppers, bell peppers, and jalapefio peppers). Crops such as
tomatoes, cacao, and chili peppers are not themselves espe-
cially rich in calories, but complement existing foods by in-
creasing vitamin intake and improving flavor.

Often New World foods have had an important effect on
cuisine evolution: chili peppers led to spicy curries in India,
paprika in Hungary, and spicy kimchee in Korea; tomatoes
significantly altered the cuisine of Italy and other Mediter-
ranean countries. Thus it is interesting to examine cuisine
from before the exchange to understand culinary evolution
[Kinouchi et al., 2008].

4 Empirical Methodology and Results

In this section, we describe the steps we undertook to empiri-
cally study the flavor pairing hypothesis in Medieval Europe,
from constructing the corpus of recipes all the way to con-
ducting the analytics. These are the same steps that need to
be performed when cooking with a computer that suggests
new food pairings based on cultural artifacts and chemistry.

4.1 Medieval Recipe Corpus Creation

The first step in investigating the flavors of Medieval Europe
was to compile a collection of recipes from that age. In par-
ticular, we found recipes in twenty-five different source texts
from England, France, Germany, and Italy, from the years
1300 to 1615. These cookbooks are listed in Table 1. Next,
concordances were generated from the source texts. From
these word lists, ingredient terms were identified, and the re-
maining parts of speech were discarded.

The terms were then manually placed into one of 391
equivalence groupings based upon plurality (e.g. ‘cheese’ and
‘cheeses’), synonyms (e.g. ‘mallard’ and ‘duck’), spelling

| Book | Country | Date

MS B.L. Royal 12.C.xi1 England/ | 1340
France

Forme of Cury England | 1390
Ancient Cookery England | 1425
Liber cure cocorum England | 1430
Two Fifteenth-Century Cook- | England | 1450
ery Books
A Noble Boke off Cookry England | 1468
Thomas Awkbarow’s Recipes | England | 15thc.
[MS Harley 5401]
Gentyll manly Cokere [MS | England | ca. 1500
Pepys 1047]
A Proper newe Booke of Cok- | England | 1550
erye
A Book of Cookrye England | 1591
The Good Housewife’s Jewell | England | 1596
Delights for Ladies England | 1609
A NEVV BOOKE of Cookerie | England | 1615
Enseignements France 1300
Le Viandier de Taillevent France 1380
Le Menagier de Paris France 1393
Du fait de cuisine France 1420
Le Recueil de Riom France 15th c.
Ouverture de Cuisine France 1604
Ein Buch von guter spise Germany | 1345
Das Kochbuch des Meisters | Germany | 1450
Eberhard
Das Kuchbuch der Sabina | Germany | 16th c.
Welserin
Libro di cucina / Libro per | Italy 14th/15th c.
cuoco
The Neapolitan recipe collec- | Italy 15th c.
tion
Due Libri di Cucina - Libro B Italy 15th c.

Table 1: Medieval source texts.

variations (e.g. ‘chicken’ and ‘chekin’), and foreign loan
words (e.g. ‘eyren’ and ‘eggs’). These last two types of
grouping were made necessary by the inclusion of source
texts written in Middle English. To build the ingredients lists,
each source text was split into individual recipes. The recipes
were compared against the table of equivalence groupings,
with words not in the table being discarded. Found words
were replaced with a lemmatized equivalent for consistency,
with duplicates within a recipe being removed. Several ex-
amples of medieval recipes are given in Table 2. Upon vi-
sual inspection, the sets of ingredients are quite different than
what one experiences today. The recipe ingredient prepara-
tion procedure was done as conscientiously as possible, but is
not without error.

In total, the medieval cookbooks contained 4,133 recipes.
After the text processing and word discardal, 41 recipes in our
corpus are rendered blank. The corpus contains 386 different
ingredients ranging from acorn to zedoary. The distribution



(a) (b) (c) (d) (e)
bean venison eel mallard | frumenty
broth wine fish bread | porpoise
onion sage bone vinegar | almond

saffron | parsley date blood milk
hyssop cod pepper
pepper almond ginger
clove milk
cinnamon sugar
blood maces
flour
rice
saffron
sandalwood
ginger

Table 2: Five examples from our corpus of 4133 medieval
recipes: (a) drawen benes, (b) roo in sene, (c) eles in brasill,
(d) sause neyger for maudelard roasted, and (e) furmente with

purpeys.

of the number of ingredients per recipe is shown in Fig. 1.
The mean is 7.74 ingredients per recipe, the maximum is 42,
and the standard deviation is 4.60. A rank frequency plot of
the ingredients in the recipe corpus is given in Fig. 2.

Medieval recipes were chosen for several reasons. One rea-
son is that they have much historical interest. In fact, one
of the chefs that we interviewed, Michael Laiskonis, specifi-
cally mentioned reading historical cookbooks as inspiration
for new dishes. Another reason is that the medieval pri-
mary sources are in the public domain. In contrast, the recipe
sources in [Ahn et al., 2011], e.g. allrecipes.com, are propri-
etary and data extracted from them cannot be released publi-
cally.

4.2 Flavor Compound Data

As we have discussed, we are interested in examining the ef-
fect of data sets with different properties, and thus we con-
duct empirical studies with two different flavor compound
databases: VCF and Fenaroli. The previous work on the fla-
vor pairing hypothesis used only Fenaroli [Ahn ef al., 2011].
The first iteration of VCE, the Lists of Volatiles, was com-
piled by Weurman in 1963 at the Central Institute for Food
Research, which is part of the Nederlandse Organisatie voor
Toegepast Natuurwetenschappelijk Onderzoek (TNO). It is
continually updated and enhanced by analytical chemists at
TNO. We use version 14.1 which was released in January
2013. We scraped and parsed the flavor compound data from
the online repository http://www.vcf-online.nl.

VCF contains 522 food products and 102 food product cat-
egories, which we take together as 624 ingredients. It also
contains 7,647 unique flavor compounds. Examples of flavor
compound listings per ingredient are given in Fig. 3(a) and
Fig. 4(a) for saffron and almond respectively. The distribution
of the number of flavor compounds per ingredient is shown in
Fig. 5. The minimum number is 1 (lobster), the maximum is
2,733 (wine), the median is 83, the mean is 175.95, and the
standard deviation is 285.93. A rank frequency plot of com-
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Figure 1: Probability density function of the number of ingre-
dients per recipe in our medieval corpus.
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Figure 2: Rank frequency plot of ingredients in our medieval
corpus.

pounds in VCF is given in Fig. 6.

The other flavor compound source is the fifth edition of
Fenaroli’s Handbook of Flavor Ingredients [Burdock, 2004]
as processed by [Ahn et al., 2011]. The first edition of this
work was published in 1971 and there also now exists a sixth
edition. This data set has 1,530 ingredients and 1,107 flavor
compounds. The distribution of the number of compounds
per ingredient is shown in Fig. 7. The maximum number of
flavor compounds per ingredient is 239 (black tea), the me-
dian is 2, the mean is 24.04, and the standard deviation is
43.07. The rank frequency plot is given in Fig. 8. The com-
pound lists for saffron and almond from Fenaroli are given in
Fig. 3(b) and Fig. 4(b).

Fenaroli has a greater number of ingredients than VCF but
a much smaller number of flavor compounds. The average
number of compounds per ingredient detected by Fenaroli is
also much less than VCF. The mean to standard deviation ra-



2-phenylethanol (=phenethyl alcohol)

safranal (=2,6,6-trimethyl-1,3-cyclohexadienecarbaldehyde)
3,5,5-trimethyl-2-cyclohexen-1-one (=isophorone)
hexadecanoic acid (=palmitic acid)
2,6,6-trimethyl-2-cyclohexene-1,4-dione
(Z2.,7)-9,12-octadecadienoic acid (=linoleic acid)
(2.,2.,7)-9,12,15-octadecatrienoic acid (=linolenic acid)
naphthalene

2.,4,6-trimethylbenzaldehyde (=mesitylaldehyde)
2,6,6-trimethyl-1,4-cyclohexadienecarbaldehyde
6,6-dimethyl-2-methylene-3-cyclohexenecarbaldehyde
4-hydroxy-2,6,6-trimethyl-1-cyclohexenecarbaldehyde (=4-hydroxysafranal)
3,5,5-trimethyl-3-cyclohexen-1-one
3,3,4,5-tetramethylcyclohexanone
3.5,5-trimethyl-4-methylene-2-cyclohexen-1-one
4-hydroxy-3,5,5-trimethyl-2-cyclohexen-1-one
2,3-epoxy-4-(hydroxymethylene)-3,5,5-trimethylcyclohexanone
5,5-dimethyl-2-cyclohexene-1,4-dione
2,2,6-trimethylcyclohexane-1,4-dione (=3,5,5-trimethyl-cyclohexane-1,4-dione)
2-hydroxy-3,5,5-trimethyl-2-cyclohexene-1,4-dione
2-hydroxy-4,4,6-trimethyl-2,5-cyclohexadien-1-one
2,6,6-trimethyl-3-oxo-1,4-cyclohexadienecarbaldehyde
4-hydroxy-2,6,6-trimethyl-3-oxo-1,4-cyclohexadienecarbaldehyde
4-hydroxy-2,6,6-trimethyl-3-oxo-1-cyclohexenecarbaldehyde
3-hydroxy-2,6,6-trimethyl-4-oxo-2-cyclohexenecarbaldehyde
4-(2,2,6-trimethyl-1-cyclohexyl)-3-buten-2-one
4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-3-buten-2-one (=/3-ionone)
verbenone (=2-pinen-4-one)

octadecanoic acid (=stearic acid)

(Z)-9-octadecenoic acid (=oleic acid)

2(5H)-furanone (=crotonolactone, 2-buten-4-olide, 4-hydroxy-2-butenoic acid lactone)

(@)
phenethyl alcohol
2,6,6-trimethylcyclohexa-1,3-dienyl methanal
isophorone

palmitic acid
2,6,6-trimethylcyclohex-2-ene-1,4-dione
9,12-octadecadienoic acid (48 %) plus 9,12,15-octadeca- trienoinc acid (52%)

(b)

Figure 3: Flavor compounds in saffron (Crocus sativus L.)
from (a) VCF data set and (b) Fenaroli data set. The com-
pounds in bold appear in both lists.

tio for both sets is similar and the shape of the distributions
and rank frequency plots is also similar. The real key differ-
ence is in the coverage of the data sets reflected in the axis
labels of the plots. Looking at the two example ingredients,
saffron and roasted almond, we see that all compounds listed
for saffron in Fenaroli also appear in VCF,! but there are ad-
ditional compounds in VCF. Similarly, most Fenaroli com-
pounds for roasted almond appear in VCF whereas VCF has
a greater number that do not appear in Fenaroli. We examine
the effect of such a differences in data on quantification of
flavor pairing in Section 4.4.

4.3 Ingredient Matching

The final piece of data preparation is matching the names of
ingredients from the medieval recipes and the two chemical
compound data sets. For Fenaroli, we used the ingredient
names of [Ahn et al., 2011] and did a simple string match to
the ingredient names in our medieval corpus. We were able
to match 157 ingredients and were unable to match 229 in-
gredients. We note that Ahn et al. associate the compounds

'The names of compounds may not match exactly, but are
matched chemically using the Chemical Abstracts Service registry.
The orders of the matching molecules correspond in the tables.

«-ionone

2-acetylpyrrole (=methyl 2-pyrrolyl ketone)

phenol (=hydroxybenzene)

furfuryl alcohol (=(2-furyl)-methanol, 2-furanmethanol)
methyl 2-furancarboxylate

furfuryl acetate (=2-furanmethanol acetate)
6,7-dihydro-5-methyl-5H-cyclopentapyrazine
3-methyl-1,2-cyclopentanedione (=cyclotene)
trimethylpyrazine

hexane

benzaldehyde

4-hydroxy-4-methyl-2-pentanone (=diacetone alcohol)
(E)-B-ionone

2-pyrrolecarbaldehyde (=2-formylpyrrole)
(2-furyl)pyrazine

2,5-dimethylpyrazine

2,6-dimethylpyrazine

2-(2-furyl)-3-methylpyrazine

furfural (=2-formylfuran, 2-furancarbaldehyde, 2-furaldehyde)
5-(hydroxymethyl)furfural
4-hydroxy-2-(hydroxymethyl)-5-methyl-3(2H)-furanone
2-acetylfuran (=2-furyl methyl ketone, 1-(2-furyl)ethanone)

(a)
a-ionone
methyl-2-pyrrolyl ketone
phenol

furfuryl alcohol

methyl furoate

furfuryl acetate
5h-5-methyl-6,7-dihydrocyclopenta(b)pyrazine
methylcyclopentenolone
2,3,5-trimethylpyrazine

acetylpyrazine

1-tyrosine

b-ionone

I-histidine

(b)

Figure 4: Flavor compounds in almond (roasted) (Prunus
amygdalus) from (a) VCF data set and (b) Fenaroli data set.
The compounds in bold appear in both lists.

in essential oils and extracts to the original ingredient and in-
clude the flavor compounds of more general ingredients into
more specific ingredients. For VCF, we did manual process-
ing of the ingredients and were able to match 191 ingredients.
In VCEF, ingredients are sometimes part of larger ingredient
categories; following a similar philosophy as Ahn et al., we
matched to categories when possible. One major factor in the
higher VCF match rate is that the medieval corpus contains
forty-two different fish, e.g. anchovy, bass, dace, hake, and
whiting. We matched all of these fish to the VCF product
category fish. Although the overall database of Fenaroli has
more ingredients than VCEF, the difference is no longer signif-
icant after matching to the medieval corpus.

4.4 Flavor Pairing Analysis

With all data collected, prepared, and matched, we can per-
form the statistical analysis described in Section 2.3. We first
calculate the average number of shared compounds among
the over four thousand recipes in our medieval corpus. The
distribution of Ng(R) using the Fenaroli data is shown in
Fig. 9. The distribution using the VCF data is shown in
Fig. 10. The average across the corpus is calculated as
Nreal = 11.26 for Fenaroli and Nr&! = 51.42 for VCF.

The values are quite different due to VCF containing so
many more flavor compounds. We can examine how corre-
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Figure 6: Rank frequency plot of compounds in VCE.

lated the N, (R) values are when using the two different fla-
vor compound data sets. A scatter plot is shown in Fig. 11.
The correlation coefficient between the two is 0.542. Since
most of the Ng(R) values are small, we can also examine the
correlation after a logarithmic transformation. The correla-
tion coefficient between the log(/Ng(R) 4 1) values using the
two data sets is 0.688. The shared compound calculation us-
ing the two different flavor compound data sets yields similar
results, but not a full correlation. ~

Now to understand the meaning of the V. ;"eal values, we
must also calculate N 9 for the two compound sets. Using
the exact same instantiation of random medieval ingredient
sets, we find N4 = 4.54 for Fenaroli and N*"d = 54.17
for VCEF, yielding AN, = 6.72 for Fenaroli and AN, =
—2.75 for VCFE.

These delta values lead to opposite conclusions. On one
hand, using the Fenaroli data, we see a very strong positive
indicator of the flavor pairing hypothesis in Medieval Europe.
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Figure 7: Probability density function of the number of com-
pounds per ingredient in Fenaroli.

10

—_
T

—
OI

Frequency
[E—Y
S
b

—
(e)
&

10 : : 5 :
10 10 10 10 10
Rank

Figure 8: Rank frequency plot of compounds in Fenaroli.

A value of 6.72 is much larger than for any modern cuisine
reported in [Ahn ef al., 2011]. (The N**! value for Medieval
Europe is actually quite similar to modern North America,
but the N*22d value for Medieval Europe is smaller.) On the
other hand, using the VCF data, we obtain a negative ANy,
which means that ingredients that don’t share many flavor
compounds are used together.

We can also calculate and examine the individual ingre-
dient contributions. Table 3 list the top and bottom fifteen
contributors using the two data sets. The bottom fifteen con-
tributors are fairly stable with respect to the two chemical
databases, but the top fifteen contributors are different. The
VCEF list is dominated by fish, whereas the Fenaroli list does
have many fish, but other things as well. Most of the fish at
the top of the VCF list were not matched using Fenaroli data.
This difference may be the main contributor for the conflict-
ing results.
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Figure 9: Probability density function of the number of av-
erage shared flavor compounds per recipe from the Fenaroli
data set. The mean N, = 11.26.

Top Fen Top VCF | Bottom Fen | Bottom VCF
1 whale halibut filbert valerian
2 blackberry dace lentil buttermilk
3 bacon thorneback octopus horseradish
4 haddock sole valerian eggplant
5 tuber hake horseradish oregano
6 beer turbot caviar chicory
7 salmon mullet oregano cuttlefish
8 cider carp chickpea caviar
9 beef dogfish cuttlefish clam
10 | strawberry ray vervain lentil
11 cod shad nettle barley
12 herring trout buttermilk turkey
13 cheese citron clam minnow
14 grape gurnard pennyroyal prawn
15 bean bream rue scallop

Table 3: Top and bottom fifteen contributing ingredients to
medieval cuisine.

5 Conclusion

In this work, we have examined food ingredients that appear
in medieval recipes, focusing on how many chemical flavor
compounds the ingredients share. Our contribution is study-
ing the reasons and effects of dirty data, in particular finding
that conclusions can be reversed by differences in data qual-
ity. Specifically, we have tested the hypothesis that food in-
gredients that share many flavor compounds go together in
dishes.

Using a sparser and more incomplete chemical database
and matching procedure, we find the hypothesis to be true
in Medieval Europe. Moreover, in comparing with analysis
of modern regional cuisines using the same exact chemical
database, we find the pairing to be stronger in the medieval
period than in modern times. The main difference is not in the
level of pairing in the recipes, but in the lack of potential pair-
ing in the available ingredients as expressed through random

Probability Density
o
[\

OO 200 400 600 800 1000 1200
N

N

Figure 10: Probability density function of the number of av-
erage shared flavor compounds per recipe from the VCF data
set. The mean N, = 51.42.

recipe ensembles. As is known historically, the number of in-
gredients available after the Columbian Exchange, including
in the modern world, is much greater than before. The results
we obtain bear this fact out. Even though medieval cooks had
a more difficult job because there were fewer paired ingredi-
ents, they were able to achieve the same level of flavor com-
pound pairing. After the exchange and the introduction of a
boatload of new ingredients, Western cooks have maintained
the pairing level, but increased variety. We can conjecture
that there is some combination of pairing and variety or bal-
ance that chefs aim to achieve; by having more ingredients,
they are able to more easily satisfy the pairing and turn their
attention to variety and balance.

In future work, it would be interesting to see whether this
inference, comparison, and conjecture holds when analyzing
modern recipes using the more complete chemical database
we have utilized to study medieval cuisine. We have seen here
that the quality of the raw data and quality of the data prepara-
tion have a fundamental downstream effect on analysis. The
more complete dataset has indicated the opposite: that in-
gredients with shared compounds are not over-represented
in recipes. Understanding this result requires more detailed
study.

Scientifically validated design principles are important
for using computational techniques in generating flavorful,
novel, and healthy culinary recipes. These design princi-
ples, however, are often derived from large-scale data anal-
ysis, and so there is a need for complete and accurate data
sources. In this work on medieval cuisine, we found different
results using different flavor compound databases. From the
point of view of computational creativity for culinary recipes,
if we want to generate foods that people from Medieval Eu-
rope might find flavorful, this leaves us in a bit of a dilemma.
Should we be promoting flavor pairing or not.

Broadly speaking, computational creativity algorithms
have two phases: first generating combinatorially many new
ideas, and then evaluating the ideas on metrics of quality and
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Figure 11: Scatter plot of the number of average shared flavor
compounds per recipe calculated using the Fenaroli and VCF
data sets.

novelty. Each domain of creativity, whether music, literature,
or food recipes, needs a defined notion of quality. Flavor pair-
ing is a putative quality metric for cooking, but our analysis
here is not conclusive and indicates that there is more to the
story.
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Abstract

In this paper, we demonstrate preliminary exper-
iments using generative probabilistic models on
recipe data. Recipes are reduced to lists of in-
gredients and analyzed in a bag-of-words fashion.
We first visualize the highly-dimensional ingredi-
ent space and map it to different world cuisines.
Latent Dirichlet Allocation (LDA) and Deep Be-
lief Networks (DBN) are then used to learn gen-
erative models of ingredient distributions and pro-
duce some novel ingredient combinations. First
results demonstrate the feasibility of the approach
and point to its promise in recipe improvization.

1 Introduction

To the first approximation, a recipe consists of an ingredient
list and the accompanying cooking instructions. In [Buykx
and Petrie, 20111, the authors show that splitting recipe con-
tent into distinct blocks is rated best by the cooks who use the
recipe. In addition, ingredient amounts are shown to be more
useful within the method instructions than when presented
together with the ingredient overview. Therefore, ingredient
list and instruction sections can safely be addressed individu-
ally. In this work, we analyze the ingredient space of different
recipes, resorting only to their ingredient lists.

A lot of research in the past several years focused on the
recipe method, analyzing its text or augmenting its content
using other modalities. We take a different approach. We ob-
serve that digital recipe texts, even in the ingredient overview
part, are still rather static and isolated from each other regard-
less of similarities between the dishes they represent. There-
fore, we aim to analyze ingredient lists at word level to pro-
vide an entry-point in recipe discovery.

Treating ingredients individually can lead to establishing
ingredient correlations and recipe similarities. For instance,
the former could allow for ingredient substitutions, whereas
the latter could enable combining individual recipes for a sin-
gle dish. In addition, dishes could be visualized in context,
in terms of flavors combined, geographical region, and so on.
For example, Wikipedia lists 28 different kinds of meatball
dishes, even excluding the regional variations within coun-
tries. Given that all these dishes share the same ingredient
base, they could easily be connected, and together give rise

to a potentially new dish variant. In this paper, our goal is to
demonstrate preliminary experiments which lead in that di-
rection.

2 Related work

There has been an increasing body of research lately con-
cerning automation related to recipe information and cook-
ing activities. Beside many groups and companies taking part
in a Computer Cooking Contest', workshops are being orga-
nized in conjuction with Al and multimedia conferences. In
addition, we are seeing recommendation systems based on
ingredient networks [Teng et al., 2011] as well as attempts
to quantitatively validate the food pairing hypothesis [Ahn et
al., 2011]. All these activities indicate an increasing inter-
est in using computers in the kitchen, as well as increasing
awareness of the importance of cooking in everyday lives.

Within the body of research, some approaches provide
multimedia enhancements of textual recipe information. This
is aimed at facilitating the process of cooking or at fixing
some undesirable behavior [Wiegand et al., 2012]. Whereas
some methods focus on supporting a person while cooking
[Hamada et al., 2005; Ide er al., 20101, others help people
who follow a specific diet [Brown et al., 2006; Chi et al.,
2007]. In contrast to these approaches, which augment exist-
ing textual information, we take a step back and concentrate
on finding the limits of analysis of recipe texts, more specifi-
cally their ingredient lists.

The second group of recent approaches build on stan-
dard knowledge discovery (KDD) systems, adapted to recipe
data. For example, the authors in [Gaillard er al., 2012;
Dufour-Lussier et al., 2012; Mota and Agudo, 2012] focus on
case-based reasoning (CBR) methods. CBR is the method of
solving problems based on previous solutions to similar prob-
lems. However, this process mostly involves data ontologies
and expert knowledge. We follow a different path. Instead
of imposing structure on data, we aim to discover any struc-
ture that may be present in recipes using machine learning
approaches.

We mostly draw inspiration from [Ahn et al., 2011] and
[Teng et al., 2011]. However, where [Ahn et al., 2011] an-
alyzes foods at the level of flavor compounds, we limit our-
selves to the level of individual ingredients. In contrast to

'"http://computercookingcontest.net/



[Teng et al., 2011], which computes complement and sub-
stitution networks based on co-occurences, we wish to go a
step further and find longer-range ingredient and dish rela-
tionships as well. We aim to do so by employing appropriate
pattern recognition methods.

In the machine learning literature, many document analy-
sis methods rely on extensions of Latent Dirichlet Allocation
(LDA) [Blei et al., 2003]. LDA is a generative probabilis-
tic model that represents each document as a mixture of a
small number of hidden topics. In addition, each document
word can be assigned to one of the document’s topics. These
methods can be easily applied to the recipe domain, as has
been done in [Mori ef al., 2012], where the text of the recipe
method is being analyzed. We also use LDA, but start by
applying it to ingredient lists only, aiming to discover latent
ingredient bases underlying specific recipes.

3 Generative Probabilistic Models

In this section, we give an overview of the two generative,
latent variable models that we use for modeling ingredient
distributions. Those are Latent Dirichlet Allocation (LDA)
and Deep Belief Networks (DBN).

3.1 Latent Dirichlet Allocation

LDA is a generalization of the earlier Probabilistic Latent Se-
mantic Analysis (PLSA) [Hofmann, 2001]. Both are well-
known latent variable models for high dimensional count
data, especially text in a bag-of-words representation. In this
representation, D documents are each represented as a vec-
tor of counts with W components, where W is the number
of words in the vocabulary. Each document j in the corpus
is modeled as a mixture over K topics, and each topic k is
a distribution over the vocabulary of W words. Each topic,
¢k, 1s drawn from a Dirichlet distribution with parameter 7,
while each document’s mixture, 6, is sampled from a Dirich-
let with parameter ov. For each token ¢ in the corpus, a topic
assignment z; is sampled from 6, and the specific word z;
is drawn from ¢,. The generative process is thus:

Ok ~ Dla]  ¢ur ~ Dln]

Exact inference (i.e. computing the posterior probability
over the hidden variables) for this model is intractable [Blei et
al., 2003] and thus a variety of approximate algorihtms have
been developed. Ignoring o and 77 and treating 0},; and ¢, as
parameters, we obtain the PLSA model, and maximum likeli-
hood (ML) estimation over 0} and ¢,,, directly corresponds
to PLSA’s Expectation-Maximization (EM) algorithm.

Starting from the form of log-likelihood,

1= log ) P(zi|zi, ) P(z]d;,0)

Zi ~ ek’,di :Ui ~ ¢w,zi-

we obtain the parameter updates via standard EM derivation:

P(zi|x;, d;) < P(z;|zi, &) P(2;|d;, 0) (1)

Guw o X z:]l[szzZ = w, z; = k|P(zi|%;, d;) (2)

O, ; o ZH[% = k,d; = j|P(z|zi, d;) (3)

These updates can be rewritten by defining v, = P(z =
klx = w,d = j), Ny; the number of observations for
word type w in document j, N = zj NuwiYwiks Nkj =

Zw NuwiVwiks Nk = Zw Nyr and N; = Zk Ni;. Then,
¢w,k<_ka/Nk Ok,j (—Nk]/NJ

Plugging these expressions back into the one for the poste-
rior in Equation 1, we arrive at the update,

Ny N
N,

where the constant N; is absorbed into the normalization.

4)

Ywik X

3.2 Deep Learning

Since no exact inference is possible in LDA and PLSA, they
have to resort to slow or inaccurate approximations to com-
pute the posterior distribution over topics. This makes it diffi-
cult to fit the models to data. In addition, there are limitations
on the types of underlying structure that can be represented
efficiently by a single layer of hidden variables.

To that end, Deep Belief Networks have been introduced in
[Hinton ez al., 2006]. DBN’s are generative probabilistic net-
works, composed of multiple layers of latent variables, which
typically have binary values. They are usually represented by
Restricted Boltzmann Machines (RBM) [Ackley ef al., 1985]
at each layer. The layers of visible and hidden units are con-
nected by a matrix of symmetrically weighted connections,
optimized dring the learning phase.

Given an observed word count vector v and hidden topic
features h, let v € {1,..., W}V, where W is the dictionary
size and U is the document size, and let h € {0, 1} be binary
stochastic hidden topic features. Let V be a W x U observed
binary matrix with v = 1 if visible unit u takes on w®"
value. The energy of the state {V, h} is defined as follows:

u F W

u w F
B(V,h) == > > Miphroy =) > wibi=> hyay
f

u=1 f=1w=1 u=1w=1 =1
@)

where {M, a, b} are the model parameters: M, is a sym-
metric interaction term between visible unit v that takes on
values w, and hidden feature f; b/ is the bias of unit u that
takes on value w, and a is the bias of hidden feature f. The

probability that the model assigns to a visible binary matrix
V is:

1
P(V)=~ Zhj exp(—E(V, h)), (6)
where Z is the partition function or normalizing constant:

Z =YY exp(-E(V,h)) (7)
V h

The conditional distributions are given by softmax and logis-
tic functions:

exp(bY + 3 5_, hyM¥})
S exp(bi + Sy hy M)

p(v, =1lh) = (8)
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Figure 1: Visualization of ingredient space - a mapping to 2 dimensions using t-SNE. Different cuisines are represented by
different markers. For each cuisine, the number in parentheses indicates the percentage of recipes that it covers in the dataset.
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In document retrieval, a separate RBM is created for each
document, and there are as many softmax units as there are
words in the document. All the softmax units can share the
same set of weights, connecting them to binary hidden units.
Given a collection of N documents {V,,}_,, the derivative
of the log-likelihood w.r.t. parameters M takes the form:

- EPmodel [vwhf]7

Olog P(Vy,)
N Z 8Mw
(10)

where Ep,_, [] denotes an expectation w.r.t. the data distri-
bution Piata(hy V) = p(h| V) Pyu1a(V), with Py (V) =
~ 2., 0(V — V,,) representing the empirical distribution,
andEp . []isan expectation w.r.t. the distribution defined
by the model. Exact maximum likelihood learning in this
model is intractable, and learning is usually done by follow-
ing an approximation to the gradient of a different objective
function, a process called contrastive divergence.

EPdata [Uwhf]

4 Learning recipe ingredient space
4.1 Dataset

In this work, we aim to discover relationships, whether ex-
plicit or implicit, that may exist between different recipe vec-
tors. For the preliminary experiments, we use the recipe col-
lection of [Ahn et al., 2011], which comes with more than

56000 recipes and 381 unique ingredients. The data was ac-
quired by crawling three large recipe depositories, two Amer-
ican (allrecipes.com, epicuirous.com) and one Korean (menu-
pan.com) (for parsing details, please see [Ahn et al., 2011]).
The recipes in the dataset are represented as ingredient lists
only; therefore, we only consider the presence or absence of
individual ingredients at this stage.

4.2 Cuisine mapping

To visualize the data and obtain some insight into its struc-
ture, we use the whole recipe corpus together with cuisine
labels that are supplied with it. We utilize the technique of t-
Distributed Stochastic Neighbor Embedding [van der Maaten
and Hinton, 2008], which has shown promising results in vi-
sualizing the structure of high-dimensional data. Figure 1
shows a mapping of the ingredient space to different cuisines
in two dimensions.

As can be seen from the figure, different cuisines are not
equally represented in the dataset. In fact, North American
recipes account for almost 3/4 of all the data. Nevertheless,
certain conclusions can still be drawn even from this biased
collection:

e South European, Latin American and East Asian recipes
constitute very distinct dish groups;

e the above groups are nevertheless close to each other in
the ingredient space;

e Asian cuisines (East, South and South East ones) are all
connected into a separate cluster;
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Figure 2: Latent Dirichlet Allocation. (a) Spatial visualization of 6 LDA topics. (b) Zoomed-in view of the two overlapping

topics on the left, showing two different bases containing meat.

e Western European and North American groups cover
the largest variety in ingredient space, overlapping with
all other cuisines (although this effect is probably at-
tributable to the bias in recipe distribution);

e there is a small group of Latin American dishes that
1s effectively closer to East Asian and South European
cuisines than the Latin American one; same is true for a
small group of South European dishes farther away from
its base and closer to the North American tradition;

e Middle Eastern dishes sit between South European ones
and East Asian ones;

e Eastern European dishes overlap with South European
and North American ones; etc.

Therefore, different cuisines, which are essentially human
constructs, indeed form distinct groupings in the ingredient
space. This is observable, in only two dimensions, even when
recipes are reduced to ingredient lists and only the ingredient
presence/absence is considered.

4.3 Factor analysis

Latent variable models effectively project the data to a lower-
dimensional manifold. However, the number of latent vari-
ables in such cases is not immediately apparent. Although
many techniques exist for learning the intrinsic data dimen-
sionality, most of them are very unstable, and we resort to
an experiment with Factor analysis. The performance over
different number of factors gives an indication of the number
of latent variables for use in other models, such as LDA. For

—training set
—test set

Figure 3: Factor analysis: log-likelihood vs. number of fac-
tors/dimensions used.

this purpose, we use the Matlab Toolbox for Dimensionality
Reduction by Laurens van der Maaten®.

We split the data randomly into two halves, one used as the
training set and the other as the evaluation set. For each dif-
ferent dimensionality, we learn the factor analysis mapping
from the training data and compute the corresponding log-
likelihood. That same mapping is then applied to the evalua-
tion set, giving another log-likelihood value. This procedure
is repeated for the number of factors ranging from 2 to 100,
with a step of 5. The results are given in Figure 3, showing
the log-likelihood leveling up after approximately 60 factors.

’http://homepage.tudelft.nl/19349/Matlab_
Toolbox_for_Dimensionality_Reduction.html



Figure 4: Ten new recipes sampled from the learned distribu-
tion given by a 3-level DBN.

4.4 Latent ingredient bases

Our goal is to analyze existing ingredient space and gener-
ate novel ingredient combinatons based on the learned mod-
els. We use LDA to project our highly-dimensional ingredient
space to a smaller number of topics (i.e. ingredient bases) and
then observe whether these bases make sense and how they
are distributed. Since 60 or so dimensions, as given by factor
analysis, would result in a cluttered figure, for visualization
purposes we project to 6 topics only. The hyperparameters on
the Dirichlet priors are set to « = 50/K and n = 200/W:
changing their values does not influence the results. We use
the LDA package of [Griffiths and Steyvers, 2004] and show
the results in Figure 2.

The figure shows the main ingredient bases maximally
spaced apart on the horizontal axis: savory ones to the left
and sweet ones to the right of the map. In addition to two
“meat bases” on the left side, there is a base containing typi-
cal South-East Asian ingredients on top, and another one with
common South European ingredients at the bottom of the fig-
ure. The ingredient base with common additives that affect
acidity or fluidity of a dish is placed in the center of the map.
The visualization implicitly shows the measure of how fre-
quently certain (sets of) ingredients are used together.

4.5 Generating novel ingredient combinations

If we learn a generative probabilistic model from the ingredi-
ent data, we can also randomly sample it and observe the re-
sulting ingredient combinations. These combinations will not
necessarily correspond to those observed in the recipe corpus,
but may represent completely novel varieties. In fact, one can
imagine different parameter settings resulting in varying ‘lev-
els of combination novelty’.

For this purpose, we use a 3-layer DBN with an RBM at
each layer. Beside the learning rate and the weight decay
in learning the RBMs, which we fix at default values, the
only additional parameters are the number of hidden nodes in
each layer. In experiments presented here, we use 500 hidden
variables in the first and second layer, and 2000 in the third.
Changing the “network shape” by modifying these numbers
can lead to somewhat different results, giving more exotic
combinations, longer ingredient lists, etc.

We learn the network model and then sample the result-
ing distribution for 10 recipes. A color-map representation of
these recipes is shown in Figure 4. In the figure, rows repre-
sent the 10 recipes, columns represent 381 ingredient dimen-
sions, and color indicates probability of ingredient presence
(blue = unlikely, red = very likely). Ingredients more to the
left are those encountered earlier in the dataset, whereas more
exotic ones are likely to be present at right. For example, the
ingredient most used in the generated recipes, and visible as
the connected strip at far left, is butter. Recipe contents are
given in full in Table 4.5.

A quick inspection of the combinations in the table shows
sensible pairings. Ingredients usually used for cakes are com-
bined with fruits or nuts, whereas meat and seafood usually
come with vegetables or herbs. Even some more unexpected
combinations, e.g. involving fruits and vinegar, or fruits,
meat and nuts, are in fact common in African cuisine. An-
other thing to note is that the number of ingredients is mostly
between 10 and 20, out of the possible 381. These lists can
be further constrained by increasing the threshold on the in-
gredient probability given by the network.

5 Conclusions

In this work, we demonstrate some preliminary experiments
attempting to learn the ingredient space using machine learn-
ing approaches. To that end, we focus only on the ingredient
list of each recipe and analyze it in a bag-of-words fashion.
Beside exploiting this information to e.g. provide ingredi-
ent substitutions or obtain dish similarity networks, we aim
to automatically generate novel ingredient combinations. We
use Latent Dirichlet Allocation to learn and visualize latent
ingredient bases, whereas novel ingredient combinations are
generated using Deep Belief Networks. Preliminary results
show the promise of this approach, resulting in sensible in-
gredient bases as well as novel ingredient combinations.

Future work will focus on the gathering of a less biased
dataset and on recipe completion under the user-specified
constraints.  Extensions are likely to include ingredient
amounts, as well as better visualization of ingredient and dish
relationships.
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Abstract

In this work, we investigated the automatic predic-
tion of user ratings for recipes. Information in-
cluding the ingredients, the instructions, and the
reviews from Epicurious were fed into a machine
learner, a multi-class support vector machine, to ex-
amine how reliable they are when predicting recipe
ratings. Our results show that information from the
reviews results in the most reliable predictions: we
reached an accuracy of 62%. The problem is dif-
ficult, partly because of the skewing of the ratings:
most recipes are rated with 3 or 4 out of 4 forks.

1 Introduction

Exchanging recipes over the internet has become popular
over the last decade. There are numerous sites that allow us to
upload our own recipes, to search for and to download others,
as well as to rate and review them. Such sites aggregate in-
valuable information, not only in terms of providing recipes,
but also in providing information about cultural preferences
with regard to food. For example, the site Epicurious' has
more than 1 100 recipes for chili, but only 24 of those are
low sodium. The site also presents 174 recipes for muffins,
out of which 21 do not contain any dairy products. Such facts
give us a first indication that Americans may eat more salty
chilis than low-sodium ones, if we assume that the users of
the site have a similar distribution as the American popula-
tion. Additionally, a closer look reveals that out of all muffin
recipes, only 11.5% have the highest rating of four forks?,
while among the non-dairy muffins, the percentage of four-
fork ratings is 23.8%. From this, we could conclude that
Americans like non-dairy muffins better than the ones con-
taining dairy (keeping in mind the small size of the sample).
In this paper, we investigate whether we can predict user
ratings for individual recipes, given the ingredients, the in-
structions, the reviews, or a combination of these features. If
these experiments are successful, we can draw conclusions
1) about which ingredients good recipes include, 2) whether
quantities of ingredients or 3) specific steps in the instructions

"http://www.epicurious.com
*Ratings in Epicurious are represented with 0 to 4 forks, includ-
ing the intermediate values 1.5, 2.5 and 3.5.
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have an influence on the ratings, and 4) whether we can detect
reliable clues in the user reviews that allow us to deduce how
much users like a recipe.

Questions 1) and 2) exploit intuitions and knowledge such
as the inference that since fat is a flavor carrier, larger
amounts of fat would generally increase taste and subse-
quently ratings. However, this does not carry across cate-
gories: having a larger amount of sugar in a cookie recipe
may increase ratings while having the larger amount of sugar
in a pot roast may have the opposite effect.

Question 3) is based on the assumption that easier recipes
may be rated higher than more difficult ones. Difficulty may
concern the number of steps in a recipe or involving cer-
tain techniques, such as melting chocolate in a double boiler
rather than in a normal pot or measuring the temperature of
melted sugar with a candy thermometer.

Question 4) is an extension of sentiment analysis, which in-
vestigates methods to classify users’ attitudes towards a prod-
uct (or other entities). In our case, the product is the recipe
in question. However, the situation is complicated by the fact
that we do not classify individual reviews or even sentences
into positive or negative sentiment, but rather attempt to clas-
sify a recipe based on all reviews, which may be contradic-
tory. The reviews for one randomly selected muffin recipe,
for example, show ratings that range from 1 fork to 4.

The remainder of the paper is structured as follows: We
will present related work in section 2. Then, we will discuss
the data set and the questions that we will tackle in more de-
tail in section 3 and the experimental setup in section 4. In
section 5, we will present and discuss the results, and in sec-
tion 6, we will conclude our findings and discuss future work.

2 Related Work

The history of applying computer technology to support
cooking activities goes back to 1986 when CHEF, a case-
based machine planner was created to generate new cook-
ing plans from experience (i.e., old plans) [Hammond, 1986].
Later, various interactive cooking support systems including
CounterActive [Ju et al., 20011, eyeCook [Bradbury et al.,
2003], and Smart Kitchen [Hashimoto and Mori, 2008] were
proposed. Recent developments focus on health driven cook-
ing support systems [Karikome and Fujii, 2010; Kamieth et
al., 2011; Wagner et al., 2011]. All these smart kitchen sys-
tems require heavy domain knowledge, which nowadays can



be generated via crowd sourcing, e.g., online recipe sharing.
In the last decade, researchers have studied online recipes
for making recommendations to meet personal preferences
[Ueda et al., 2011] or health concerns [Freyne and Berkovsky,
2010; Mino and Kobayashi, 2009]. Such studies often focus
on a specific cuisine or type of food, e.g., cookies, and need
to build user models [Sobecki et al., 2006]. Different from
these recommendation systems, our work is content-driven
and is interested in understanding the overall recipe prefer-
ences from all users. Nevertheless, recipe features used in
such systems are applicable to our work.

Ingredients are the most commonly studied features for
recipe recommendations. [Freyne and Berkovsky, 2010] con-
sidered all ingredients to be equally weighted within a recipe
and aggregates the ratings of ingredients to predict the recipe
rating. They found that this simple break down and construc-
tion approach worked better than a user-driven approach that
takes user rating into consideration. While ingredient ratings
are often not available, their experience shows the value of
ingredients for predicting user ratings. Till today, most stud-
ies have treated ingredients equally [Forbes and Zhu, 2011;
Teng et al., 2012] and used them as binary features. [Zhang
et al., 2008] manually grouped ingredients into three levels
of importance and ingredients that the researchers considered
most important have the highest weight. To the best of our
knowledge, this work is the first to use the actual quantities
of ingredients within a recipe as feature values.

Cooking methods are another type of features that has been
used for recipe recommendation. In the past, these features
were either created manually [van Pinxteren et al., 2011] or
mined from existing knowledge bases [Teng et al., 2012],
which may be due to the noise in instruction text. Our work
proposes a simple linguistic approach to directly extracting
cooking methods and other features from instructions.

Although user reviews are the basis for recipes ratings, they
have been used to identify refinements (e.g., reducing sugar in
arecipe) [Druck and Pang, 2012; Teng et al., 2012], but not to
rate recipes. Our work uses sentiment analysis on recipe re-
views and compares review features with content-based fea-
tures in terms of their effectiveness for predicting ratings.

More recipe features can affect user ratings, and they are
often used together. [van Pinxteren ef al., 2011] manually de-
veloped 55 features (e.g., soup, French cuisine), which cov-
ered 13 recipe characteristics (e.g., meal type, preparation
time, preparation technique) for pasta. [Teng et al., 2012] ap-
plied ingredient features, ingredient co-occurrence and sub-
stitution network features, and primary recipe features such
as cooking methods, preparation time, and nutrition informa-
tion to predict which recipe has the higher rating between a
pair of similar recipes. They found that ingredient network
features and nutrition features were most effective in their
machine learning experiments, with accuracies of 75% and
78.6% respectively. When working with various features,
[Freyne and Berkovsky, 2010; van Pinxteren et al., 2011]
used the weighted average to determine feature preferences,
and [Forbes and Zhu, 2011] used a more sophisticated matrix
factorization approach.

3 How to Predict User Ratings

In this section, we will first describe the data sets, and then
the research questions that we are investigating in this paper.

3.1 Data Set

We developed a web crawler to scrape recipes with their in-
formation from the Epicurious site. Overall, we extracted
more than 28 000 recipes. Then, we excluded all recipes for
which we did not have the information to extract the features
interesting to us (e.g., there are recipes that received no re-
views and hence no rating information), which reduced the
data set considerably, to 10 146 recipes. To avoid overwhelm-
ing the classifier by highly reviewed recipes, we did not in-
clude more than 10 reviews per recipe. For all recipes with
more than 10 reviews, we took a random sample of 10 reviews
out of the total number of reviews. We also only used full
ratings, i.e., 3.5 forks are rounded down to the 3-fork class,
based on the observation that users are generous when rating
recipes. After this step, the data has the following distribution
of classes/forks across all examples:

1 fork :112 examples

2 forks: 795 examples
3 forks: 5 670 examples
4 forks: 3 569 examples

This shows that we are dealing with a well known prob-
lem in machine learning: our data is heavily skewed towards
higher rankings.

For every recipe, we extracted and prepared features in the
following four groups:

e The overall rating (our gold standard classification) in
terms of forks

e Metadata

1. whether there is a picture

2. whether there is wine pairing suggestion

whether there is a quick meal label

whether there is a healthy meal label

whether it appears in the Epicurious menu

the type of the recipe (e.g., Alcoholic, Salad)

the type of cuisine (e.g., African, Italian)

the recipe’s dietary condition (e.g., Healthy, Vegan)
number of available metadata items

10. number of cuisine types associated with the recipe
11. number of dietary conditions covered by the recipe
12. the gender of the contributor

00NN AW

e Ingredients
1. the ingredients used in the recipe that occur in > 4
recipes
2. the quantities of the ingredients
3. the number of ingredients
4. the main ingredients of the recipe (a separate group
provided by Epicurious for each recipe)

e [nstructions



1. the cooking steps/methods (e.g., chop, boil)
2. number of major steps (e.g., prepare the dough)
3. number of cooking steps

e Reviews

1. alist of indicative uni-, bi-, and trigrams

2. a list of best TF/IDF indicative uni-, bi-, and tri-
grams

Most features are represented by a binary value that indi-
cates the presence or absence of each of the categories possi-
ble for this feature. For example, for each of the existing types
of the recipe (e.g., Alcoholic, Salad, Sauce) we include a sep-
arate feature/value pair. Quantitative features, such as the
number of ingredients, are represented with a scaled-down
value ranging from O to 1 by dividing each feature value by
the maximum number of features.

From the list of ingredients of a recipe, we extracted the
ingredients and reduced them to their main nouns, noun com-
pounds, or noun phrases. For example, the ingredient “3 ta-
blespoons unsalted butter” is reduced to “butter”, “1 Granny
Smith apple, peeled, cored, and finely chopped (1 1/2 cups)”
is reduced to the compound “Granny Smith apple”. This was
carried out based on a part-of-speech (POS) analysis of the
ingredients. POS tagging is a well researched technique from
Natural Language Processing that assigns a word class label
to every word. Thus, both “Granny” and “Smith” would be
assigned the label NNP, for proper noun, while apple is as-
signed NN, for common noun. The word “unsalted” would be
assigned the label JJ for adjective. Excluding text within para-
phrases, we kept all nouns (common and proper) and noun
phrases that consist of one adjective modifier and one single
noun head (e.g., “black pepper”). To avoid sparse features,
we also excluded adjectives if the adjective falls into a manu-
ally created stopword list, including such words as “fresh”. In
order to use ingredient quantities as the values for ingredient
features, we converted all the volume measures to tablespoon
(tbsp). Thus, if one recipe needs “1 cup of sugar” while the
other recipe needs “2 tablespoons of sugar”, both instances
will be assigned the feature “sugar_tbsp” and the values will
be “16” and “2” respectively. We identified around 9 000
ingredient-measurement combinations and kept the ones that
occur in at least 4 recipes to ensure that the features general-
ize well. Thus, we acquire a collection of 2 406 ingredient-
measure features for our experiments.

For POS tagging, we used the Stanford POS tagger
[Toutanova et al., 200313, with the best performing model.
However, since this POS tagger model was trained on the
Wall Street Journal section of the Penn Treebank [Marcus et
al., 1993], we were using it out of domain, thus increasing the
error rate. As a consequence, many verbs from the instruc-
tions are mistagged as nouns since they often occur as imper-
atives at the beginning of the sentence, and they occur more
often as nouns in the Penn Treebank. For example, in the in-
struction “Drain over a rack.”, the first word is mistagged as
a noun instead of as a verb in the base form (VB).

From the instructions, we extracted all verb clusters and
normalize them to the last verb. I.e., we extracted “set” from

3http://nlp.stanford.edu/software/tagger.shtml

the sentence “You might want to set a timer.” All verbs in
past tense (e.g., “boiled”, “chopped”) and verbs that occur in
less than 3 recipes were removed. Mistagged verbs were also
manually removed. At the end, we had a total of 340 actions
(e.g., “add”, “roast”, “stir”).

From the reviews, we extracted n-grams (sequences of n
words) that have discriminating capability between ratings.
We consider uni-, bi-, and trigrams, based on words and on
POS tags. E.g., “absolutely amazing”, “very disappointing”
etc. are covered by the bigram “RB JJ”. “everyone loved”
is based on “NN VBD”. The most discriminating n-grams
are the ones that achieved the highest term frequency/inverse
document frequency (TF/IDF) scores. Since TF/IDF reflects
how import a word is to a document, the higher the TF/IDF
of a word, the more discriminating power it has. In calculat-
ing the TF/IDF values, we considered every review a docu-
ment. TF/IDF values ranged from 6 to approximately 20 000.
We then restricted the n-grams to the set of those that have a
TF/IDF of at least 5 000.

3.2 Research Questions

In this work, we used a machine learning approach to inves-
tigate four main questions: 1) Can we reliably predict user
ratings from the set of ingredients and their quantities? If
this experiment is successful, we can conclude that there are
specific ingredients or combinations of them that have an in-
fluence on how much users like the recipe. 2) Can we reliably
predict user ratings from the instructions? In other words, are
there certain instructions or combinations of them that influ-
ence user ratings, potentially because they are more compli-
cated or difficult to execute? 3) Can we reliably predict user
ratings from the set of reviews for the recipe? We assume that
there is a close connection between the two, but the connec-
tion may be obscured by the fact that more people submit-
ted ratings but only a small subset of these also provided re-
views, which can vary considerably per recipe. Note that we
approached all these questions indirectly, not by looking at
statistical information directly but rather by employing clas-
sification. This has the advantage that we can use a successful
classifier to predict the success for a novel recipe. This leads
us to our last question: 4) Which types of information do we
need in order to obtain a reliable rating classifier?

In order to investigate the first question concerning the in-
gredients and their quantities, we conducted the following ex-
periments:

e INGREDIENT: Here, we used the ingredients and their
quantities as well as the number of ingredients, i.e. fea-
tures 1 through 3 from the Ingredients features in sec-
tion 3.1. Ingredients are in the form of the ingredient
plus the measurement for the quantity, e.g. sugar_tbsp;
the quantities serve as values for their corresponding in-
gredient.

e INGR:NOQUANT: Here, we used the ingredients
as presence features, i.e., they take binary values
(present/not present) plus the number of ingredients.

e INGR:ADDMAIN: Here we used all features from IN-
GREDIENT and also add the main ingredients, i.e., fea-
tures 4 from the Ingredients features in section 3.1.



In order to investigate the second question, we conducted
the following experiments:

e INSTRUCT: We used all features from the Instructions
features in section 3.1.

In order to investigate question 3, we compare the follow-
ing experiments:

e REVIEW:ALL: Here we used the full n-grams (without
filter) from the Reviews group in section 3.1 (i.e. fea-
tures 1-3).

e REVIEW:FILTER: In this setting, we only used the list
of best TF/IDF indicative n-grams. (i.e. features 4-6).

The final question is concerned with finding the best classi-
fier. We decided to experiment with the full set of features and
with classifiers in which one of the feature sets is excluded:

e ALLFS: This setting includes all collected features.

e ALL:NOMETA: In this setting, all metadata features
were removed.

e ALL:NOINGREDIENT: All features that represent the
ingredients were excluded.

e ALL:NOINSTRUCT: All features that represent the in-
structions were excluded.

e ALL:NOREVIEW: In this setting, the set of all review
features was excluded.

4 Experimental Setup and Evaluation

For classification, we used Support Vector Machines (SVMs)
in the implementation of SVM'9"*  In particular, we em-
ployed the multi-class version SVM™ticlass [Crammer and
Singer, 20021*. SVM is a machine learning classification ap-
proach which uses a function (called a kernel) to map exam-
ple instances onto a linearly separable space.

All experiments reported here were performed with default
parameter settings. In preliminary experiments, we observed
that a higher value of the c parameter (i.e., the trade-off be-
tween training errors and margin) yields better results than
its default value. However, it also resulted in unmanageable
training time due to sheer volume of the data. In order to
avoid benign data splitting, we used 10-fold cross-validation
and report all results averaged over the 10 runs. As base-
line, we used the setting in which the class with the highest
number of recipes (the three-fork rating) is used to label all
instances. We report accuracy for each evaluation setting as
well as precision (P), recall (R), and F-scores (F) per class
within the distinct settings. After feature extraction and com-
position of the feature vectors, we achieved a collection of
5 241 feature/value pairs that represent the information listed
in four separate groups in section 3.1.

S Experiments
5.1 How Important Are Ingredients and Their
Quantities?

In order to investigate how important ingredients and their
quantities are for user ratings, we carried out a classification

4http://svmlight.joachims.org/svm_multiclass.html

experiment, in which we used the features from the ingre-
dients (see section 3.1) and their quantities (INGREDIENT),
and another one without quantities (INGR:NOQUANT). The
baseline is shown first, and the results for the experiments
with ingredients are shown in the second part of table 1.

The results show that we have a very competitive base-
line: Just by choosing the class 3-forks for every recipe, we
reached an accuracy of 56%. This is due to the heavy skewing
in the distribution of the user ratings. When we used ingredi-
ent information, we reached a considerably lower accuracy of
50%. Almost none of the recipes were correctly classified as
disliked recipes (1- and 2-forks). By leaving out the quantities
(INGR:NOQUANT), we reached a marginally higher accuracy
of 51%, gaining mostly in recall for the 3-fork rating. From
these results, we can conclude that neither the list of ingredi-
ents nor the combination of these ingredients and their quan-
tities are good predictors of ratings, and thus, it is unlikely
that specific ingredients are directly related to the rating. Ad-
ditionally, to answer the question in the title: While butter is a
flavor carrier, it is the most frequent ingredient across all four
ratings. Thus, butter is not a good discriminative feature.

In the next setting (INGR:ADDMAIN), we added the list
of main ingredients as listed on the recipe page. This results
in a higher accuracy of 55%, which is close to the baseline.
However, it is interesting to see that we thus predicted a very
similar distribution to the baseline: All recipes are grouped
in the 3- and 4-fork categories, with a preference for the ma-
jority class of 3 forks. The results show that for the 3-forks
rating, we still have a high recall (87%). This means, that the
additional main ingredients help increase accuracy but at the
expense of the lower ratings, meaning that the main ingre-
dients are typical for 3-forked recipes, but not for poorly or
highest rated recipes.

Sampling of ratings: Since we have a heavily skewed dis-
tribution of possible classes, we decided to apply up- and
down-sampling to reach more balanced ratios of training in-
stances. In downsampling, we restricted the number of train-
ing instances for the classes with more examples to match the
number of instances in the least represented class (1 fork). In
upsampling, the instances from lower classes in the training
set are duplicated until they reach a more balanced ratio. For
both methods, we tested different ratios. However, all these
experiments resulted in a decrease in accuracy, so we used the
full training set for the remaining experiments.

5.2 Can Instructions Predict Ratings?

For this question, we looked at the INSTRUCT setting in the
third part of table 1. The results show that this setting is again
close to the baseline and the INGR:ADDMAIN setting: We
reached an accuracy of 56%, and all ratings are in the 3- and
4-fork category. From this, we can conclude that there is no
direct interaction between the instructions and the distribution
of ratings.

5.3 Can Reviews Predict Ratings?

For this question, we looked at the REVIEW:ALL and the
REVIEW:FILTER settings in the fourth part of table 1. RE-
VIEW:ALL uses the full list of n-grams from the reviews



1-fork 2-fork 3-fork 4-fork Acc

P R F P R F P R F P R F '

1 BASELINE 0 0 0 0 0 0 0.56 | 1.00 | 0.72 0 0 0 0.56
2 INGREDIENT 0.02 | 0.05 | 0.03 | 0.10 | 0.03 | 0.05 | 0.57 | 0.71 | 0.63 | 0.39 | 0.28 | 0.32 | 0.50
INGR:NOQUANT 0.03 | 0.05 | 0.03 | 0.14 | 0.02 | 0.04 | 0.57 | 0.74 | 0.64 | 0.40 | 0.28 | 0.33 | 0.51
INGR:ADDMAIN 0 0 0 0.05 0 0 0.57 | 0.87 | 0.69 | 0.43 | 0.18 | 0.26 | 0.55

3 INSTRUCT 0 0 0 0 0 0 056 | 097 | 0.71 | 0.47 | 0.05 | 0.10 | 0.56
4 REVIEW:ALL 0.17 | 0.15 | 0.15 | 0.37 | 0.08 | 0.13 | 0.64 | 0.77 | 0.70 | 0.60 | 0.51 | 0.55 | 0.62
REVIEW:FILTER 0.14 | 0.21 | 0.17 | 0.26 | 0.25 | 0.25 | 0.64 | 0.68 | 0.66 | 0.58 | 0.52 | 0.55 | 0.59
5 ALLFs 0.14 | 0.17 | 0.15 | 0.27 | 0.30 | 0.28 | 0.66 | 0.66 | 0.66 | 0.58 | 0.56 | 0.57 | 0.59
ALL:NOMETA 0.18 | 0.21 | 0.19 | 0.28 | 0.29 | 0.29 | 0.66 | 0.68 | 0.67 | 0.59 | 0.55 | 0.57 | 0.60
ALL:NOINGREDIENT | 0.18 | 0.24 | 0.21 | 0.33 | 0.32 | 0.32 | 0.65 | 0.67 | 0.66 | 0.58 | 0.55 | 0.57 | 0.59
ALL:NOINSTRUCT 0.14 | 0.18 | 0.15 | 0.27 | 0.30 | 0.28 | 0.66 | 0.67 | 0.66 | 0.58 | 0.55 | 0.57 | 0.59
ALL:NOREVIEW 0 0 0 0.10 0 0 059 | 0.84 | 0.69 | 0.50 | 0.29 | 0.37 | 0.57

Table 1: The experimental results in all evaluation settings; P=precision, R=recall, F=F-score.

while for REVIEW:FILTER, we use the TF/IDF filtered n-
grams. The results show that the REVIEW:ALL setting
reaches the highest results with an accuracy of 62% and the
best distribution over all ratings. When we filtered the n-
grams, we reached higher recall and F-scores for the disliked
categories: The F-score increases from 15% to 17% for the
1-fork rating and from 13% to 25% for 2 forks. However,
this is offset by a loss in recall in the 3-fork rating, leading to
a decrease in overall accuracy. This means that the filtered n-
gram features lose their ability to distinguish 3-fork ratings to
a certain extent. In the future, we will experiment with other
feature selection methods.

5.4 Which Types of Information are Necessary?

For this question, we investigated whether we can obtain bet-
ter ratings when we integrate information from different types
of information about the recipe. Here, we looked at an exper-
iment that used all available features, ALLFS, then we re-
duced the feature set by each group of features. The results
are shown in the last part of table 1. Surprisingly, using all
features results in an accuracy of 59%, which is higher than
the baseline, but it is also considerably lower that the accu-
racy reached by using only review features.

The experiments where we removed groups of features
show that only one group of features is detrimental to the
overall results: the metadata features. The removal of this
group results in a minimal improvement of accuracy over all
features. This is not surprising since Epicurious attempts to
promote all recipes. However, we will need a closer look to
see whether individual features from this group may be use-
ful. As expected, the removal of review features leads to the
lowest accuracy (57%) in this group of experiments.

Overall, we can conclude that reviews provide the most re-
liable information for predicting ratings for recipes. However,
if we aggregate all reviews into one decision, as we have done
here, this means that the lower ratings are dispreferred by the
classifier. From these results, we conclude that we need more
information and more reliable features for the classifier.

6 Conclusion and Future Work

In this work, we investigated the prediction of recipes from
the Epicurious site. We extracted information about the fol-

lowing categories: metadata, ingredients, instructions, and re-
views. Our experiment showed that using only information
from reviews results in the highest accuracy. However, this is
a difficult problem because of the skewed distribution of the
ratings. When using all n-grams from the reviews, we obtain
an accuracy of 62%.

This work is still at the beginning. We are planning to im-
prove the approach in three different areas: First, we will in-
vestigate our current features in more detail. Some features
can be cleaned up further, and the groups of features we inves-
tigated may have been too coarse. I.e., looking at individual
features may help us identify predictive features.

Second, we need to improve the approach to sentiment
analysis with respect to the reviews. We are planning to in-
tegrate a separate classifier for individual reviews, so that we
can include information about the distribution of the reviews
into the recipe classifier. Here, we need to investigate which
features are important for both classifiers in order to gain op-
timal results. We are also planning to explore the use of both
general and corpus-based sentiment lexicons, e.g., Wilson’s
subjectivity terms [Wilson et al., 2003] and a frequency lex-
icon containing patterns that could capture intentionally mis-
spelled words (e.g., “luv,” “hizzarious”) [Yang et al., 2008].

Third, we are planning to improve the Natural Language
component and perform domain adaptation along the lines
of [Kiibler and Baucom, 2011]. We are also planning to in-
tegrate a dependency parser, MaltParser [Nivre er al., 2007]
into the system. The dependency parses provide syntactic in-
formation in form of dependencies (directed arcs) between
pairs of words. The dependencies also carry grammatical
information, which allows us to detect “who does what to
whom”. Additionally, they can also provide information with
regard to the scope of negation. Negation has to be dealt with
in sentiment analysis to ensure that “not good” is treated as a
negative expression. However, more complex cases of nega-
tion such as “ I don’t think, the recipe is good.” are often not
handled correctly.
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Abstract

Online recipes are often accompanied by user re-
views. In addition to numeric ratings and descrip-
tions of modifications, these reviews frequently
contain detailed information about the cooking pro-
cess, the taste and texture of the dish, and occasions
or situations for which the dish is suited. In this pa-
per, we aim to leverage this information to build a
system that predicts what users would say about a
recipe. Specifically, we annotate recipes with at-
tributes that are applied to them in reviews. Then,
we train models to predict these attributes using in-
formation about the ingredients, preparation steps,
and recipe title. For example, we aim to predict
whether a salad would be described as “refreshing”
in reviews. We demonstrate that it is possible to
make such predictions accurately and that the fac-
tors that are important in these predictions are intu-
itive. We also discuss potential downstream appli-
cations of this method to recipe recommendation,
recipe retrieval, and guided recipe modification.

1 Introduction

There has been substantial interest in improving recipe re-
trieval and recommendation by augmenting recipe repre-
sentations with various types of metadata, including course
and dish tags, quality estimates, and possible modifica-
tions [Badra et al., 2008; Teng et al., 2011; Wang et al., 2008;
Zhang et al., 2008]. In particular, prior work has shown that
substitutions, omissions, and other recipe modifications can
be gleaned from the text of user reviews [Teng et al., 2011;
Druck and Pang, 2012]. However, reviews also provide infor-
mation about the taste of the dish (“Great but next time I will
use low sodium ham because it was WAY too salty.”), the tex-
ture (“It is rich and textured, wonderfully creamy.”), how the
dish was received (“My kids loved this recipe because there
weren’t any strong flavors, it was all so well blended.”), and
how the dish made the reviewer feel (“What a comforting, sa-
vory dish!”). In this paper, we leverage reviews to augment
recipe representations with such information.

Unfortunately, appropriate reviews are not always avail-
able. Small recipe sites may lack reviewing functionality or a
sizable community of reviewers. On sites with large numbers

of recipes, a new recipe may never be reviewed because users
are weary of trying it until someone else reviews it. Even
when a recipe has several reviews, the particular aspect of
interest may not be discussed, or there may be insufficient
evidence to make the desired inference.

In this paper, we aim to predict what a review would say
about a recipe. For example, we would like to predict how
“creamy” a particular soup will be, or how “chewy” a partic-
ular batch of cookies will be, without using reviews. To do
this, we identify applications of recipe attributes (e.g. creamy,
chewy) in review text for a set of recipes (e.g. soup recipes,
cookie recipes). Then, we train models that rank recipes by
the likelihood that they have different attributes using only
features of the recipe. This enables augmenting recipe repre-
sentations when reviews are unavailable, and is a step toward
a deeper (computational) understanding of recipes.

More specifically, we first select a set of recipes and ac-
companying reviews. The reviews are analyzed, and selected
words and phrases from the reviews are proposed as candi-
date attributes. In this paper, we manually select a subset of
the more interesting candidates. Then, we build rule-based
taggers that identify applications of attributes to recipes in re-
views. This part of our approach is discussed in Section 3.

Next, we aggregate applications of attributes across re-
views to obtain an attribute probability for each recipe and
attribute pair. The attribute probability is the proportion of
reviews of a recipe that apply a particular attribute. This data
is then used to train ranking models for each attribute. In
particular, we take a pairwise learning to rank approach [Her-
brich et al., 2000; Joachims, 2002; Burges et al., 2005]. This
involves training models that, given a pair of recipes, predict
the recipe with the higher attribute probability. Because the
attribute probability estimates are noisy, we are careful to use
pairs that we are confident have different attribute probabili-
ties. The features of the ranking models include the recipe in-
gredients, abstractions of the ingredients, ingredient amounts,
and features derived from the preparation steps and recipe ti-
tle. This part of our approach is discussed in Section 4.

We compare a baseline and several variants of our approach
on 15 prediction tasks. Our approach yields accurate predic-
tions for these tasks and substantially outperforms the base-
line. We conduct ablation experiments in order to determine
the importance of different types of features. We also provide
data that allows for qualitative evaluation of the trained mod-



els (Section 5.2). Finally, we discuss potential applications
(Section 6) and provide discussion (Section 7).

2 Related Work

We are not aware of prior work that identifies recipe attributes
such as taste, texture, and relevant occasions in user reviews,
or prior work that trains models to predict attributes from a
representation of the recipe. More generally, we are not aware
of prior work that predicts review text using a description of
the item being reviewed, or prior work that uses review text
as a source of supervision.

Prior work in recipe review text analysis has focussed
on extracting substitutions and other modifications of the
recipe [Teng er al., 2011; Druck and Pang, 2012]. In contrast,
in this paper we focus on extracting other types of information
from the reviews (e.g. taste, texture, occasion). The review
analysis component of our approach (Section 3.3) could eas-
ily be adapted to identify modifications as well. This would
enable the prediction of recipe modifications.

Prior work that uses recipe reviews as a source of super-
vision has focussed on utilizing review scores. In particu-
lar, Teng et al. [2011] estimate ingredient co-occurrence and
substitution networks from recipes and reviews, and use fea-
tures of these networks to predict review scores. In contrast,
we aim to predict attributes derived from review text, rather
than review scores. Additionally, our approach uses abstrac-
tions of ingredients, ingredient amounts, information about
the preparation steps, and the recipe title to make predictions.

More generally, there has been interest in augmenting
recipe representations with metadata or additional structure.
Zhang et al. [2008] and Badra et al. [2008], among oth-
ers, use case-based representations and case-based reason-
ing for recipe retrieval. Both works additionally augment
recipe case representations with predicted attributes such as
dishes, courses, and cuisines. Our method could be used for
these prediction tasks, but supervision for them is more re-
liably available in other forms, as most online recipe sites
include cuisine and course annotations. Instead, we focus on
attributes for which reviews are the best or only source of su-
pervision. Due to the nature of review-based supervision, we
also use a learning to rank approach, rather than a classifica-
tion approach. The attributes that our approach predicts could
be used to further augment a case-based recipe representation.

There are several papers that study recipe recommenda-
tion, though each addresses a slightly different task. While
Teng et al. [2011] predict a proxy for overall recipe popu-
larity, other work addresses personalized recipe recommen-
dation based on explicit ratings [Forbes and Zhu, 2011;
Freyne et al., 2011] or implicit interactions (e.g. recipe page
views) [Ueda et al., 2011]. The focus of our work is quite
different. Our goal is to use information from reviews to en-
hance our representation and understanding of recipes, rather
than recommend recipes to users. However, the attribute pre-
dictions our method produces could be used as an additional
input to recommendation systems.

Other work aims to derive a structured representation of
the recipe from its preparation steps. For example, Wang et
al. [2008] represent the preparation steps as a graph in which

nodes are steps and directed edges are dependencies between
steps. They then identify common subgraphs and use them
to develop a new recipe representation that facilitates similar-
ity computation. In this paper, we use a bag-of-words repre-
sentation of the preparation steps, but we plan to consider a
structured representation in future work.

Finally, there is prior work that aims to predict review
text from a partial review. Bridge and Healy [2012] develop
GhostWriter-2.0, a system that assists users in writing prod-
uct reviews. Given a partial review, the system suggests ad-
ditional product-specific aspects that could be addressed. In
contrast, we predict review text from the item being reviewed.

3 Identifying Recipe Attributes in Reviews

We now describe our approach. We refer to the properties
of recipes we aim to predict as recipe attributes. Examples
include:

e tastes/flavors: spicy, bitter, rich, earthy

e textures: creamy, crunchy, chewy, hard

e occasions: party, picnic, Thanksgiving, summer
e other: kid friendly, comfort food, easy, refreshing

In this section we discuss identifying recipe attributes in
reviews. In Section 4, we discuss training models to predict
recipe attributes using features of the recipe.

3.1 Filtering by Dish

We may be interested in predicting an attribute for a particu-
lar type of dish, e.g. chewy cookies (see also the discussion
in Section 7). Therefore, the input to the system is a set of
recipes with accompanying reviews, along with an optional
dish filter. If the dish filter is invoked, only recipes for a cer-
tain dish will be retained in subsequent steps. Identifying the
dish is a non-trivial problem. In this paper, we find that the
following heuristic, based on the recipe title, is effective, de-
spite its simplicity:

1. Strip trailing prepositional phrases like “with Basil”
from the recipe title, as well as numbers (‘“Pumpkin Pie
IV”), the word “Recipe”, and other non-critical content
like stylistic punctuation.

2. Extract as the dish name the last £ words of the re-
maining recipe title. For example if the recipe name is
“Roasted Carrot and Tomato Soup with Basil”, for k = 4
(the value we use in this paper) we would extract “Carrot
and Tomato Soup” as the dish.

A recipe is filtered if its dish name does not end with the
supplied dish filter.

3.2 Selecting Attribute Types

In this paper, we manually select a set of interesting attributes
from reviews with the aid of computational tools. Specifi-
cally, common phrases and bigrams that are not ingredients
or function words are identified as candidates. A dish fil-
ter can also be specified. In this case, we require candidate
words and phrases to be especially likely in reviews of the



dish!. For the purposes of this paper, we selected a diverse
set of 15 attributes from the candidate lists that span the cat-
egories provided above. Of the 15, 8 have an associated dish
filter. Table 1 displays the full set of attributes with dish fil-
ters. As we discuss in Section 7, we plan to avoid this manual
selection step in future work.

3.3 Identifying Applications of Recipe Attributes
in Reviews

The next step is to annotate reviews with the attributes they
apply to the recipe. We assume each attribute is either present
or absent in each review. Although some attributes like moist-
ness would ideally be expressed numerically (how moist?),
we leave the extraction of a numeric value from review text
(““very moist”— ?) for future work.

Teng et al. [2011] found that a rule-based approach was
sufficient to identify substitutions, additions, and deletions in
reviews. Similarly, we find that a simple rule-based approach
is sufficient to identify attributes. In our method, reviews are
first split into sentences. Each attribute has its own “tagger”
with inclusion and exclusion regular expressions. The tagger
returns present if at least one sentence matches the inclusion
regular expression and does not match the exclusion regular
expression. By default, the inclusion regular expression re-
quires the attribute word or phrase to be present and the ex-
clusion regular expression forbids negations like “this isn’t
easy.” If required, the defaults can be overridden to incorpo-
rate synonyms, stemming, and special cases, though we did
not find this to be necessary in this work.

Though this method is very simple, we find that it is sur-
prisingly precise. Based on a sample of 100 reviews, the pre-
cision of the default tagger for “easy” is 97% and the default
tagger for “moist” (with a cake dish filter) is 93%, where a
correct prediction occurs when the reviewer is actually ex-
pressing that the recipe has the attribute. One common type
of error occurs when the user describes their modification to
the recipe, rather than the original. The simplicity and pre-
cision of this method likely comes at the expense of recall,
but this concern is mitigated by the fact that we aggregate
attribute predictions over a large number of reviews.

4 Predicting Recipe Attributes

We now have a set of reviews annotated with binary at-
tributes. We next compute attribute probabilities for each
recipe. The attribute probability for a particular recipe and
attribute is the proportion of reviews of the recipe that ap-
ply the attribute. For example, if a particular recipe has
10 reviews, and the attribute easy is applied in 4 of them,
the easy attribute probability is 0.4. Our approach involves
training independent models to predict each attribute using
recipes annotated with attribute probabilities. In the rest of
this section we describe the procedure for a single attribute.
We denote the set of recipes with attribute probabilities by
D = {(x%,al),..., (2" a™)}, where x* is the ith recipe, a’
is the attribute probability for the ith recipe, and 7 is the total
number of recipes.

"We consider a word or phrase to be especially likely if its point-
wise mutual information in reviews of the dish is > 2.

4.1 Ranking Model and Estimation

We next learn to rank? recipes according to their attribute
probabilities. See [Liu, 2009] for a survey of learning
to rank (LTR) methods. The input to LTR methods is a
set of training items with scores. The goal is to learn a
model that can produce a similar ranking given data with
unknown scores — in our case recipes that have few or no
reviews. The scores in our setting are attribute probabili-
ties. Rather than defining a model that evaluates an entire
ranking at once, which presents computational challenges
because there are an exponential number of possible order-
ings, we use a pairwise decomposition of the ranking prob-
lem. In pairwise LTR [Herbrich ez al., 2000; Joachims, 2002;
Burges et al., 20051, the model evaluates the ordering of pairs
of items. Training is performed by generating pairs of recipes
from the training list and encouraging the model to predict the
recipe with the larger attribute probability. To rank recipes
with unknown attribute probabilities, the recipes are scored
using the trained model and sorted. In this paper we evaluate
rankings of recipes, but one could obtain classifications from
the ranked list by specifying a threshold on the score.

Because the attribute probabilities are noisy estimates of
the applicability of an attribute to a recipe, we only generate
training pairs when we are fairly confident that the recipes
have different attribute probabilities. Otherwise, the model
may be overwhelmed by noise, or may waste effort trying to
swap the ordering of pairs that are incorrectly labeled. To
avoid this, we estimate a confidence interval around each at-
tribute probability a*, and only generate pairs for which 80%
confidence intervals do not overlap®. The set of unique recipe
pairs from D that satisfy this constraint is denoted by P.

We use logistic regression models for pairwise prediction.
Each recipe z' is represented by a feature vector of dimen-
sionality d. The value of the kth feature for recipe @ is de-
noted by z%. We discuss the features we use in Section 4.2.
The pairwise labels y*/ are € Y = {0, 1}, where y*/ = 1 if
a® > a’ and y“ = 0 otherwise. That is, the label y*/ has
value 1 when recipe x* has the larger attribute probability.
The probability of this event is given by

1
Lt exp (= X0, Ol — )

We estimate model parameters # by maximizing the log-
likelihood of the training pairs and a Laplace prior on param-
eters (i.e. L; regularization). The objective function is

p(y" =1lz",27;6) =

d
LO)= Y logpy”la’,a’;0) =8> [0kl (1)
k=1

(i,5)€P

It is well-known that this is a convex function. We optimize
L(0) using the Orthant-Wise Limited-memory Quasi-Newton

’In an earlier version of this work, we attempted to predict at-
tribute probabilities directly using regression models. However, we
found that the ranking approach yielded more accurate predictions.

’We use an 80% confidence interval because there is a tradeoff
between having a large amount of noisy data and a small amount of
very clean data. An 80% interval filters out many pairs but retains
enough to allow the training of an accurate model.



method [Andrew and Gao, 2007]. The regularization param-
eter 3 is set to 1000 in all experiments. This constant is se-
lected to encourage aggressive regularization in order to com-
pensate for noise in the data and to produce sparse models (a
property of L regularization) that are easier to interpret.

4.2 Recipe Representation and Features

For the purposes of this paper, a recipe consists of a title, a
set of ingredients, and an ordered list of preparation steps. In
this section we discuss the features of this representation that
are used to make predictions.

We first discuss ingredient features. Our approach lever-
ages two base components: an ingredient ontology and a sys-
tem for extracting information from ingredient lines. We do
not discuss these components in detail in this paper. Impor-
tantly, the ingredient ontology allows abstraction of ingredi-
ents through is-a relationships. For example, the ontology
encodes that cauliflower is a type of inflorescent vegetable.
The ingredient line analyzer extracts the ingredient, amount,
and unit from an ingredient line. For example, the ingredient
line analyzer extracts {amount : 0.5, unit : cup, ingredient :
cauliflower} from “1/2 cup cauliflower, cut into fine shreds.”

Ingredient features consist of 1) binary features that rep-
resent the presence of an ingredient in a recipe, 2) binary
features that represent the presence of an abstraction of an
ingredient in a recipe (using the ontology), 3) numeric fea-
tures that represent the amount of an ingredient in a recipe,
and 4) binary features that represent a discretized version of
the amount of an ingredient in a recipe.

The ingredient amounts are not very usable in their original
form. We perform three steps to address this. First, we con-
vert the amount of each ingredient to mass using data from the
United States Department of Agriculture (USDA)*. If we can-
not perform this conversion, the ingredient is ignored. Know-
ing the mass of a particular ingredient is not necessarily use-
ful because different recipes produce different quantities. To
compensate for this, we normalize each ingredient’s mass by
the total mass of all ingredients in the recipe. Finally, dif-
ferent ingredients may have very different mean values. For
example, broth often makes up a large proportion of a soup,
whereas salt and spices typically make up a very small pro-
portion. To compensate for this, we standardize the amount
features using

;) Tk — Tk
ﬂfk. _ T,
O
where x, is the mean feature value and o, is the feature stan-
dard deviation (both computed using all recipes in D). The
resulting feature values can then be interpreted as the number
of standard deviations above or below the mean amount .
Finally, the binary ingredient amount features have value 1
if the amount (number of standard deviations above or below
the mean) is > 1, > 2, < —1, or < —2. We refer to these
features as bin features.

For preparation steps, we first extract preparation methods,

cooking methods, and equipment using dictionaries obtained

4Forexample,seehttp://reedir.arsnet.usda.gov/
codesearchwebapp/codesearch.aspx.

from Wikipedia®. We then add binary features that indicate
whether particular methods or types of equipment appeared
in any preparation step.

Finally, we use features of the recipe title. The title often
provides a tremendous amount of information, including the
name of the dish, the main ingredients, and words that de-
scribe the recipe. In this paper, we extract binary unigram
word features from the title, ignoring punctuation and case.

S Experiments

We downloaded 4.2M reviews from four major recipe
sites: food.com, allrecipes.com, epicurious.com, and food-
network.com. We remove recipes that have less than 10 re-
views. After filtering, there are 67,512 unique recipes, which
we process as described in Section 4.2.

Table 1 displays the list of recipe attributes we use in the
experiments, the accompanying dish filters, and excerpts of
reviews that apply the attributes to a recipe. We refer to each
attribute-dish pair as a task.

Note that we use noisy data derived from review text for
both training and evaluation. As a result, we perform both
quantitative and qualitative evaluation of the trained models.
See Section 7 for additional discussion of the advantages and
disadvantages of deriving supervision from reviews.

5.1 Quantitative Evaluation

We compare our approach using all features with a simple
baseline that ranks recipes that have the attribute name in the
recipe title above those that do not. We also compare differ-
ent versions of the learning to rank feature set. In particular,
we conduct an ablation study where one set of features is re-
moved in each trial. We perform one trial for each of the fol-
lowing feature sets. The ingredients feature set includes all
ingredient features. The abstractions feature set includes all
abstractions of the original ingredients. The amounts feature
set includes all normalized ingredient amount features (for
both the original and abstracted ingredients). The prepara-
tion feature set includes all preparation step features. Finally,
the title feature set includes all title features. To increase effi-
ciency and discourage overfitting, we prune features that oc-
cur in fewer than three recipes during feature processing.

We compare methods by measuring pairwise accuracy and
NDCG on held-out test data. Pairwise accuracy is the per-
centage of pairs for which a method predicts the correct or-
dering. Note that this only includes pairs with significantly
different attribute probabilities, as described in Section 4.1.
Random guessing would yield pairwise accuracy of 50%.

Discounted cumulative gain (DCG) is a popular metric in
the information retrieval literature for evaluating the quality
of a ranking [Jirvelin and Kekildinen, 2002].

g 2)

In Equation 2, r(¢) is the index of the ith ranked recipe and
a" is the attribute probability for the ith ranked recipe.

SFor example, see http://en.wikipedia.org/wiki/
Category:Cooking_techniques.



attribute dish filter review excerpt

comfort food — “Deep and rich and perfect comfort food.”

kids loved — “The kids loved the creamsicle flavor.”

party — “I made this recipe for a superbowl party.”

picnic — “A perfect pot luck or picnic salad!”

winter — “I’ll definitely be making this again this winter.”

easy — “This is just too easy to make, I love it!”

spicy — “great flavors, nice and spicy, MMMmmmm good.”

fell apart burgers “These tested great but fell apart in cooking.”

dry cake “This cake had a good taste but found it to be a little dry.”
moist cake “I followed the recipe exactly and the cake came out moist and delicious.”
chewy cookies “Like gingersnaps but soft and chewy.”

colorful salad “The variety of veggies is very colorful.”

refreshing salad “Nothing special, but it was tasty and refreshing.”

bland soup “But even getting passed [sic] that, the soup was pretty bland.”
creamy soup “So nice and creamy without being tooooooo fatty.”

Table 1: The list of recipe attributes we use in the experiments, the accompanying dish filters, and excerpts of reviews that

apply the attributes to a recipe.

NDCG,, is DCG,, normalized by the DCG,, value of the op-
timal ranking. In order to evaluate the complete ranking of
recipes, we use p = n. The range of NDCG values varies
based on the distribution of attribute probabilities, and hence
the NDCG results are not directly comparable across differ-
ent tasks. For each task we present mean values of pairwise
accuracy and NDCG obtained using 10-fold cross validation.

Table 2 compares the baseline method and the proposed
approach using the full feature set. The proposed approach
significantly outperforms the baseline in all experiments
(Wilcoxon signed-rank tests, p < 0.01.). The baseline per-
forms best on the creamy (soup) task, as creamy soups some-
times have the word “creamy” in the title. But the proposed
approach is able to identify many other creamy soups, and as
a result yields much higher accuracy (0.846 vs. 0.559) and
NDCG (0.680 vs. 0.513). Note that for some tasks, such
as bland (soup), the baseline pairwise accuracy is random
(0.500). Recipe authors are very unlikely to put negative at-
tributes in the titles of their recipes. The results provided by
our approach demonstrate that it is possible to accurately rank
recipes by attribute probability. In Section 5.2 we provide ad-
ditional qualitative evaluation.

Table 3 displays the results of ablation experiments. The
goal of these experiments is to determine the relative impor-
tance of the feature sets described above. The values are dif-
ferences between the accuracy/NDCG obtained using all fea-
tures (displayed in Table 2) and the accuracy/NDCG obtained
when one set of features is excluded. Statistically signifi-
cant differences are displayed in bold (Wilcoxon signed-rank
test, p < 0.05). Note that a significant decrease implies that
the excluded feature set is important for the task. The last
row displays the number of experiments in which excluding
the feature set significantly reduces accuracy/NDCG. From
these results, we conclude that title and ingredient features are
the most important (15 and 14 significant decreases, respec-
tively). Ingredient abstractions are often important as well
(11 significant decreases). Ingredient amount and preparation
step features are considerably less important (4 and 2 signifi-

cant decreases). This may be an indication that we need more
complex amount and preparation step features, as intuitively
we would expect such information to be very useful.

Though often significant, many of the absolute differences
are quite small. This suggests that although some feature sets
are more important than others, the model is mostly able to
compensate for the exclusion of a feature set using other fea-
tures. Note that there is redundancy among title features, in-
gredient features, and preparation features, as demonstrated
by a recipe titled “Baked Chicken with Roasted Tomatoes.”
Additionally, we find that excluding a feature set only signif-
icantly increases performance in one case. This suggests that
using all features is rarely harmful, despite the redundancy.

In some cases, the removal of a feature set affects pairwise
accuracy in a different way than NDCG. This occurs because
the metrics measure different things. Pairwise accuracy em-
phasizes correctly ordering a pair of recipes, no matter where
those recipes fall in the true ranking. In contrast, NDCG puts
more emphasis on the ordering of the recipes with the largest
attribute probabilities.

5.2 Qualitative Evaluation

In this section, we provide qualitative evaluation of the
trained models by displaying important features, which pro-
vides intuition about how the predictions are made, and sup-
plying example predictions on held-out recipes.

Running ablation tests that exclude each feature individ-
ually would be prohibitively expensive, and given the small
differences observed in Table 3, it would be unlikely to pro-
duce meaningful results. Consequently, Table 4 displays the
features with the maximum and minimum weights, subject to
certain criteria, for six of the tasks. In particular, we require
that the confidence intervals for these estimates do not contain
0, and that the corresponding feature be observed in at least
20 recipes. Features with weights > 0 are positive indicators
that increase the scores of recipes that have them. Features
with weights < 0 are negative indicators. The abbreviations
ingr, amt, and prep stand for ingredients, amount, and prepa-



no ingredients no abstractions no amounts no preparation no title

attribute (dish) Aacc  Andcg Aacc Andcg Aacc Andcg Aacc Andcg Aacc Andcg
comfort food -0.015 -0.022 -0.015 -0.022 -0.003 -0.013 -0.006 -0.011 -0.005 -0.013
easy -0.047 -0.011 -0.047 -0.011 -0.012 -0.003 -0.011 +0.000 -0.037 -0.013
kids loved -0.033 -0.021 -0.033 -0.021 -0.010 -0.012 -0.006 -0.008 -0.006 -0.013
party -0.015 -0.013 -0.015 -0.013 -0.013 -0.028 -0.004 +0.004 -0.022 -0.048
picnic -0.061 +0.003 -0.061 +0.003 +0.004 +0.000 -0.011 -0.012 -0.025 -0.011
spicy -0.059 -0.050 -0.059 -0.050 -0.002 +0.000 +0.003 +0.002 -0.014 -0.051
winter -0.026 -0.035 -0.026 -0.035 -0.010 +0.001 -0.005 -0.002 -0.023 -0.020
fell apart (burgers) -0.163 -0.140 -0.169 -0.141 +0.000 +0.000 -0.004 +0.016 -0.005 -0.001
dry (cake) -0.039 -0.016 +0.005 +0.016 -0.002 +0.012 -0.005 +0.020 -0.006 +0.003
moist (cake) -0.034 -0.012 -0.005 -0.003 -0.012 +0.001 -0.001 +0.006 -0.010 -0.010
chewy (cookies) -0.034 -0.012 -0.011 -0.002 -0.010 -0.007 +0.000 -0.003 -0.015 -0.084
colorful (salad) -0.028 +0.006 -0.011 +0.005 -0.004 +0.000 +0.014 +0.004 -0.020 +0.013
refreshing (salad) -0.010 +0.011 -0.009 -0.002 -0.001 +0.006 +0.001 +0.006 -0.016 -0.035
bland (soup) -0.029 -0.010 -0.011 -0.012 -0.002 -0.005 -0.023 +0.000 -0.006 -0.002
creamy (soup) -0.015 +0.009 -0.015 +0.009 +0.003 -0.002 +0.001 -0.005 -0.015 -0.032
significant decreases 11 3 7 4 4 0 2 0 8 7

Table 3: Ablation study. The values are differences between the accuracy/NDCG obtained using all features and the accu-
racy/NDCG obtained when one set of features is excluded. Statistically significant differences are displayed in bold (Wilcoxon
signed-rank test, p < 0.05). The last row displays the number of experiments in which excluding the feature set significantly
reduces accuracy/NDCG. Note that a significant decrease implies that the excluded feature set is important for the task. We see
that title, ingredient, and ingredient abstraction features are more important than amount and preparation step features.

baseline proposed method
attribute (dish) acc NDCG acc NDCG
comfort food 0.502 0.321 0.896 0.499
easy 0.520 0.784 0.716 0.856
kids loved 0.500 0.404 0.796 0.472
party 0.505 0.537 0.733 0.697
picnic 0.501 0.280 0.830 0.454
spicy 0.555 0.434 0873  0.692
winter 0.515 0.368 0.884 0.575
fell apart (burgers) 0.477 0.461  0.678 0.635
dry (cake) 0.500 0.550 0.733 0.653
moist (cake) 0.510 0.747 0.825 0.860
chewy (cookies) 0.549 0.610 0.824 0.814
colorful (salad) 0.495 0.392 0.720 0.448
refreshing (salad)  0.503  0.535 0.764 0.710
bland (soup) 0.500 0.534 0.677 0.609
creamy (soup) 0.559 0513 0846  0.680

Table 2: Comparison of the baseline and the proposed
method (using all features). The proposed method signif-
icantly outperforms the baseline on all attribute prediction
tasks (Wilcoxon signed-rank tests, p < 0.01.).

ration steps, respectively. Ingredient amount features that are
followed by (fco) are bin features (described in Section 4.2).

We acknowledge that the feature weights can be difficult
to interpret due to covariance among features. Indeed there
are some unintuitive features, often negative indicators, in Ta-
ble 4. We also see that the approach can produce unexpected
results. For the spicy task, we see expected features like fresh
chiles in the positive indicator list, but we also see sausage
and shrimp. Sausage and shrimp do appear in many spicy
recipes. Consequently, if one recipe has shrimp and another

does not, it is reasonable to guess that the recipe with shrimp
1s more spicy. However, this is not an ideal solution because
shrimp do not directly contribute to the spiciness of a dish.
Despite these issues, examining the feature weights pro-
vides a substantial amount of intuition about how predictions
are made, and most of the important features are quite intu-
itive. For example, for ranking recipes according to the picnic
attribute, the word “sandwiches” in the title is a positive indi-
cator, while the presence of dairy is a negative indicator. For
creamy (soup), the presence of fresh cheese and cauliflower
are positive indicators, while caramelization in the prepara-
tion steps and a large amount of water are negative indica-
tors. For refreshing (salad), cacumber and mint are positive
indicators, while “warm” in the title is a negative indicator.
Table 5 displays held-out recipes with the most positive
and negative scores. For example, for refreshing (salad),
our method predicts that “Easy Cucumber Salad” and “Fresh
Fruit Salad with Honey, Mint and Lime Syrup” are refreshing
while “San Antonio Taco Salad” and “Creamy Potato Salad
with Grilled Scallions” are not. Similarly, “Soft Molasses
Cookies” are chewy while "Easy Cut-Out Cookies” are not.

6 Applications

The proposed method can be used to improve the experience
of finding and evaluating online recipes in several ways.

Recipe Tags: Predicted attributes can be displayed as
“tags” on recipe pages. These tags can help users to decide
whether to make a recipe.

Recipe Search: Predicted attributes can be matched with
attributes identified in search queries to improve search rel-
evance. For example, this would allow a retrieval system to
find more relevant recipes for queries like “moist cake” and
“refreshing salad.” Importantly, our approach allows boost-



winter refreshing (salad) picnic

title : squash +1.122 title : cucumber +0.839 title : sandwiches +0.935
title : soup +1.056 title : mint +0.556 title : salad +0.748
title : chowder +0.862 ingr : fruits +0.461 ingr : mozzarella cheese +0.585
title : hot +0.850 ingr : lemon peel +0.460 amt : pork (+0) +0.559
ingr : seafood seasoning +0.784 title : orange +0.396 title : bars +0.554
title : stew +0.747 ingr : dill leaf +0.300 prep : open +0.510
title : chili +0.653 ingr : flavorings (+20)  +0.283 title : corn +0.498
title : gingerbread +0.646 ingr : world herbs +0.279 title : blueberry +0.478
ingr : clove +0.591 ingr : coriander +0.275 ingr : instant vanilla pudding +0.446
title : cinnamon +0.563 title : tomato +0.271 prep : chill +0.444
ingr : shellfish -0.733 ingr : bacon -0.545 ingr : cream -0.600
Ingr : mayonnaise -0.600 ingr : wheat flours -0.522 prep : skillet -0.409
prep : fry -0.598 title : roasted -0.497 ingr : milk -0.375
ingr : chocolate -0.579 prep : steam -0.474 prep : paper towel -0.319
prep : colander -0.467 ingr : snap beans -0.425 iamt : wheat flours (+0) -0.318
ingr : common tropical fruit -0.463 ingr : parmesan cheese -0.424 ingr : alcohol -0.255
prep : soak -0.390 prep : warm -0.412 ingr : milk & cream -0.222
ingr : extract -0.384 title : warm -0.373 ingr : asian condiments -0.218
amt : poultry (+0) -0.353 title : potato -0.360 prep : pan -0.217
ingr : pasta filata -0.343 ingr : pinto beans -0.339 ingr : cheddar -0.188
chewy (cookies) creamy (soup) spicy
title : chewy +1.455 ingr : nut/seed pastes  +0.829 title : spicy +1.291
ingr : baking mix +0.682 title : creamy +0.694 title : sausage +0.676
amt : nut/seed pastes (+0) +0.393 ingr : fresh cheeses +0.645 ingr : hispanic condiments  +0.535
amt : fats (-20) +0.378 title : split +0.450 ingr : fresh chiles +0.523
ingr : leavening agents +0.344 title : cauliflower +0.448 ingr : hot pepper sauce +0.481
ingr : syrups +0.335 ingr : wheat flours +0.438 ingr : shrimp +0.408
amt : milk/cream (+20) +0.317 title : tomato +0.370 ingr : pork sausages +0.398
ingr : dark brown sugar +0.284 title : squash +0.355 title : carrot +0.395
prep : bake +0.271 ingr : soup +0.336 title : green +0.372
amt : white sugar (+0) +0.252 ingr : dairy +0.298 ingr : ground cloves +0.344
ingr : fruit vegetables -0.507 title : barley -0.384 amt : soup (+0) -0.464
amt : fats & oils (+0) -0.366 prep : caramelize -0.363 prep : beat -0.433
prep : cut -0.342 title : vegetable -0.352 amt : grain products (+20) -0.421
amt : leavening agents (+20) -0.337 ingr : stuffed pasta -0.314 ingr : vinegar -0.362
prep : knead -0.319 ingr : thyme -0.299 ingr : citrus fruit -0.335
amt : wheat flours (+0) -0.289 title : onion -0.272 prep : trim -0.331
amt : sugars (-0) -0.275 ingr : cabbages -0.255 ingr : vinegars -0.326
prep : knife -0.250 ingr : baked goods -0.250 ingr : chocolate -0.321
prep : crumble -0.238 amt : water (+0) -0.242 ingr : dill leaf -0.300
ingr : preserves/fruit butters  -0.214 ingr : sausages -0.236 ingr : mushrooms -0.296

Table 4: Features with the maximum and minimum weights for a sampling of the tasks. Training is conducted using all
features. The abbreviations ingr, amt, and prep stand for ingredient, ingredient amount, and preparation step, respectively.
Amount features with (+co’) denote that the amount is more than ¢ standard deviations above or below the mean.



winter

refreshing (salad)

most positive:

Quinoa with Moroccan Winter Squash and Carrot Stew
Braised Provencal Chicken with Butternut Squash . . .
Spicy Sausage Soup with Cilantro

Spicy Peanut Soup with Chicken

Italian Sausage and Tomato Soup

most negative:

Shrimp & Peppers Stir Fry

Warm Jasmine Rice Salad with Shrimp and Thai Herbs
Pan-Fried Cod with Slaw

Garlic Bread Topped With Crab Meat and Spinach
Singapore Chilli Prawns (Shrimp)

picnic

most positive:

Easy Cucumber Salad

Fresh Fruit Salad with Honey, Mint and Lime Syrup
German Cucumber Salad with Sour Cream

Mango Pineapple Salad with Mint

Cucumber Salad

most negative:

Warm Nut Encrusted Goat Cheese Salad with Bacon Lardons
San Antonio Taco Salad

Creamy Potato Salad with Grilled Scallions

Farmers’ Market Salad with Spiced Goat Cheese Rounds
Sweet Corn and Basmati Rice Salad

chewy (cookies)

most positive:

Macaroni Salad with Peas and Ham

Roast Beef Sandwiches with Lemon-Basil Mayonnaise
Kittencal’s Tuna Salad Sandwiches

My Family’s Tuna-Pasta Salad

Radish Sandwiches

most negative:

Potato Soup V

Smoky Four Cheese Macaroni Bake
Baked Spaghetti

The Best Butterscotch Banana Bread
Chicken with Vin Jaune and Morels

creamy (soup)

most positive:

Cream of Tomato Soup

Butternut Squash Soup

Cream of Potato Soup III

Broccoli and Cheese Soup with Croutons
Creamy Potato Leek Soup

most negative:

Vegetable and Ground Beef Soup
Vegetable-Sausage Soup

Ham Bone Vegetable Soup 1967
Wild Mushroom and Barley Soup
Beef Barley Soup

most positive:

Soft and Chewy Peanut Butter Cookies
Chewy Chocolate Cookies I

Chewy Apple Oatmeal Cookies
Chocolate Chewy Cookies

Soft Molasses Cookies

most negative:

Pilgrim Hat Cookies
Easy Cut-Out Cookies
Walnut Butter Cookies
Pill Bottle Cookies
Chocolate Heart Cookies

spicy

most positive:

Spicy Shrimp and Grits

Grant’s Famous Midnight Grill BBQ Sauce
Spicy Black Beans with Bell Peppers and Rice
Spicy Filet Mignon

Black Beans and Tomatoes - Hot and Spicy

most negative:

Spinach-Artichoke Ravioli-Lasagna

Perfect Chocolate Cake

Lemon Chiffon Pie with Gingersnap Crust

Goat Cheese and Onion Tarts

Whole White Wheat and Honey Chocolate Chip Cookies

Table 5: Held-out recipes with the largest and smallest scores for different attributes. Training is conducted using all features.



ing the relevance score of a recipe even if the title does not
contain the attribute and few or no reviews are available.

Recipe Recommendation: The predicted attributes can be
used as inputs to recommendation systems. There is substan-
tial ambiguity about what should be returned for a query like
“salad.” However, if we know that a user prefers “refresh-
ing salads”, then we know that “Potato Salad with Bacon” is
probably not what was intended.

Recipe Modification: Often users would like to make a
recipe but do not have all of the necessary ingredients. Our
system can be used to predict how the omission of an ingre-
dient is likely to change the recipe. For example, if a user has
less oil than is suggested for a cake, we could compute the
difference in the moistness attribute score after making the
modification, and alert the user if the difference is large.

7 Discussion and Future Work

The primary advantage of using reviews as a source of super-
vision is that the data is essentially free. Creating manually
annotated data sets for these tasks would be extraordinarily
time consuming and expensive, as naively it would require
preparing and testing thousands of recipes. Automatically
generating attribute probabilities from user generated reviews
allows the approach to scale to a large number of attributes at
a significantly lower cost. However, the disadvantage of us-
ing reviews as a source of supervision is that the resulting
data is noisy. There may be errors in identifying attributes in
reviews, or the reviews may not mention the attribute even if
it applies. In particular, we have noticed that in some cases an
attribute applies to a recipe, but a user is unlikely to mention it
in their review either because it is obvious or because it is not
something that would occur to them. For example, some of
the most negative moist (cake) predictions are for ice cream
cakes. Ice cream cakes are moist, but reviewers are unlikely
to mention this. However, this suggests that users may not
expect or want ice cream cake recipes to be tagged as moist.

Some of our tasks include a dish filter. The motivation for
this is that if an attribute is particularly associated with a dish
(e.g. chewy is associated with cookies), then without a dish fil-
ter the model may simply learn to differentiate the associated
dish from all other dishes. Additionally, an attribute might
take on a particular meaning for a particular dish. A soup is
likely to be bland for different reasons than a salad. In future
work, we plan to introduce latent variables, or explore deep
learning methods, so that the models have a non-linear deci-
sion boundary and can learn recipe groupings that are best for
predicting a particular attribute without manual dish filtering.

We also plan to consider improved strategies for discover-
ing and identifying recipe attributes. Ideally we would like to
remove the manual steps described in Section 3. Instead, we
are interested in methods that would automatically induce a
taxonomy of attributes and taggers from the reviews, account-
ing for negation and synonyms. This would allow the method
to more easily scale to large numbers of attributes.

Finally, the features of the preparation steps we use are not
very effective (see Table 3). In future work, we plan to ex-
plore the use of a structured representation of the preparation
steps. For example, instead of a feature for the word mixed,

we would like to encode the ingredients that are mixed.
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Abstract

The use of a cookbook is quite awkward. Your
working space is dirty, overloaded with kitchen
utensils, your hands are probably busy, dirty or both
and it is difficult for your eyes to keep track of the
step you are working on. As a result, you keep go-
ing back and forth between the work surface and
the cookbook, you lose time, track and may even
forget a component as an unfortunate result of the
mess.

Spoken dialogue systems are relevant for helping
in a cooking task. Indeed, it can be performed
without any device. This demonstration shows and
describes Cooking Coach, two dialogue systems
(one vocal and one multimodal) helping the user
to search for a recipe, to check that she has all the
ingredients and to prepare the recipe.

1 Spoken Dialogue System

Section 1 describes the spoken version of Cooking Coach.
See Section 2 for the multimodal version.

1.1 Architecture

The architecture is illustrated by Figure 1. An Android client
has been developed in order to use the tablet or mobile sound

Figure 1: Architecture of the Cooking Coach dialogue system

capture and restitution. The role of this client is to replace the
Voice Platform that is commonly used for phone-based In-
teractive Response Services. We interface with the Dragon
Mobile SDK, developed by Nuance, in order to get Voice
Activity Detection, Automatic Speech Recognition and Text-
To-Speech. On the other end, the dialogue application is de-
ployed on an Application Server, which may have access to
Information Systems if required.

A dialogue turn is typically processed as follows. Once
Dragon Mobile has translated the audio signal into text, the
Android client sends an HTTP request to the application
server. An HTTP Server receives it and communicates its
content to the Phase Engine’s servlets. These latter asks the
Semantic Analyser to interpret it and then processes the re-
sulting request according to the dialogue logic. The servlets
may load user libraries, which in turn, may have access to
Information Systems. Once the servlets have planned the
system’s reaction, it calls a Java Server Page that generates
the Voice XML page to communicate to the client through the
HTTP Server. The client parses the Voice XML file, accesses
the Nuance Server to synthesize the text (Text-To-Speech),
plays the resulting sound to the user.

1.2 Dialogue Example
S01: Welcome to CookingCoach. What recipe do
you want to prepare?
UO1: T would like to cook brownies.
S02: You want to cook brownies. For How many
people?
U02: For two.
S03: To prepare walnut brownies, you need . ..
S04: Do you have all the ingredients?
U04: No.
S05: Which ingredient is missing?
UO05: T don’t have any walnut or chestnut.
S06: I can propose nutless brownies without your
missing ingredients. Can you precise if you agree?
U06: Yes.
S07: Great, we will start the recipe.
S08: First, you’ll need. ..
UO08: Next/Repeat/Previous
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Figure 2: Multimodal Cooking Coach graphical user interface.

After the use names one or several missing ingredients, the
system goes back to the recipe identification, and sends the
same request forbidding these ingredients. The system re-
members as well the number of people. Once the recipe has
been validated, the system reads the steps one by one, with
the possibility for the user to navigate through the steps : go
further, repeat the current step and go back to the previous
one.

1.3 Database Construction

For the purpose of the demonstrator, the database has been
built with a website (www.allrecipes.com) hoover. The fol-
lowing fields are parsed:

e Name of the recipe

e Ingredients: list of quantity, unit and name of ingredi-
ents. We implemented an smart rounding algorithm to
avoid to prepare 0.67 lemon.

e Number of persons: for how many people?

e Steps: steps to perform the recipe. We had to implement
a step splitting method, based on punctuation and step
size.

e A bunch of information not used in the application: rat-
ing, popularity, origin, poster. ..

2 Multimodal Cooking Coach

The multimodal Cooking Coach (see Figure 2) follows the
same architecture and dialogue logic except if offers several
additional multimodal ways to interact with the system:

e Touch screen : item selection / navigation button / . ..

e QR Code : in order to select an ingredient you want in
your recipe (filters the recipes with ingredients)

e Waving hand in front of the tablet : it enables to turn
pages without touching your device which might be use-
ful if your hands are dirty and the environment is too
noisy to use speech recognition.

It also enables to cook several recipes in parallel.

Since a lot of effort has been made into the implementa-
tion of the multimodal prototype, we recorded two videos.
The first one presents a use-case: http://vimeo.com/
62321504 and the second one shows the scope of the
project with all its functionalities which have been done:
http://vimeo.com/61406788. Password for both is:
muiDemo.

The next steps of our prototype are to include a better
search algorithm, in particular with filters amongst ingredi-
ents or type of food, and improve the personalisation of the
application, i.e. avoid proposing recipes with ingredients that
the user does not like.



