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Abstract

In this paper, we demonstrate preliminary exper-
iments using generative probabilistic models on
recipe data. Recipes are reduced to lists of in-
gredients and analyzed in a bag-of-words fashion.
We first visualize the highly-dimensional ingredi-
ent space and map it to different world cuisines.
Latent Dirichlet Allocation (LDA) and Deep Be-
lief Networks (DBN) are then used to learn gen-
erative models of ingredient distributions and pro-
duce some novel ingredient combinations. First
results demonstrate the feasibility of the approach
and point to its promise in recipe improvization.

1 Introduction

To the first approximation, a recipe consists of an ingredient
list and the accompanying cooking instructions. In [Buykx
and Petrie, 2011], the authors show that splitting recipe con-
tent into distinct blocks is rated best by the cooks who use the
recipe. In addition, ingredient amounts are shown to be more
useful within the method instructions than when presented
together with the ingredient overview. Therefore, ingredient
list and instruction sections can safely be addressed individu-
ally. In this work, we analyze the ingredient space of different
recipes, resorting only to their ingredient lists.

A lot of research in the past several years focused on the
recipe method, analyzing its text or augmenting its content
using other modalities. We take a different approach. We ob-
serve that digital recipe texts, even in the ingredient overview
part, are still rather static and isolated from each other regard-
less of similarities between the dishes they represent. There-
fore, we aim to analyze ingredient lists at word level to pro-
vide an entry-point in recipe discovery.

Treating ingredients individually can lead to establishing
ingredient correlations and recipe similarities. For instance,
the former could allow for ingredient substitutions, whereas
the latter could enable combining individual recipes for a sin-
gle dish. In addition, dishes could be visualized in context,
in terms of flavors combined, geographical region, and so on.
For example, Wikipedia lists 28 different kinds of meatball
dishes, even excluding the regional variations within coun-
tries. Given that all these dishes share the same ingredient
base, they could easily be connected, and together give rise

to a potentially new dish variant. In this paper, our goal is to
demonstrate preliminary experiments which lead in that di-
rection.

2 Related work

There has been an increasing body of research lately con-
cerning automation related to recipe information and cook-
ing activities. Beside many groups and companies taking part
in a Computer Cooking Contest', workshops are being orga-
nized in conjuction with Al and multimedia conferences. In
addition, we are seeing recommendation systems based on
ingredient networks [Teng er al., 2011] as well as attempts
to quantitatively validate the food pairing hypothesis [Ahn er
al., 2011]. All these activities indicate an increasing inter-
est in using computers in the kitchen, as well as increasing
awareness of the importance of cooking in everyday lives.

Within the body of research, some approaches provide
multimedia enhancements of textual recipe information. This
is aimed at facilitating the process of cooking or at fixing
some undesirable behavior [Wiegand ef al., 2012]. Whereas
some methods focus on supporting a person while cooking
[Hamada ez al., 2005; Ide er al., 20101, others help people
who follow a specific diet [Brown et al., 2006; Chi et al.,
2007]. In contrast to these approaches, which augment exist-
ing textual information, we take a step back and concentrate
on finding the limits of analysis of recipe texts, more specifi-
cally their ingredient lists.

The second group of recent approaches build on stan-
dard knowledge discovery (KDD) systems, adapted to recipe
data. For example, the authors in [Gaillard et al., 2012;
Dufour-Lussier et al., 2012; Mota and Agudo, 2012] focus on
case-based reasoning (CBR) methods. CBR is the method of
solving problems based on previous solutions to similar prob-
lems. However, this process mostly involves data ontologies
and expert knowledge. We follow a different path. Instead
of imposing structure on data, we aim to discover any struc-
ture that may be present in recipes using machine learning
approaches.

We mostly draw inspiration from [Ahn er al., 2011] and
[Teng et al., 2011]. However, where [Ahn et al., 2011] an-
alyzes foods at the level of flavor compounds, we limit our-
selves to the level of individual ingredients. In contrast to
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[Teng er al., 20111, which computes complement and sub-
stitution networks based on co-occurences, we wish to go a
step further and find longer-range ingredient and dish rela-
tionships as well. We aim to do so by employing appropriate
pattern recognition methods.

In the machine learning literature, many document analy-
sis methods rely on extensions of Latent Dirichlet Allocation
(LDA) [Blei et al., 2003]. LDA is a generative probabilis-
tic model that represents each document as a mixture of a
small number of hidden topics. In addition, each document
word can be assigned to one of the document’s topics. These
methods can be easily applied to the recipe domain, as has
been done in [Mori et al., 2012], where the text of the recipe
method is being analyzed. We also use LDA, but start by
applying it to ingredient lists only, aiming to discover latent
ingredient bases underlying specific recipes.

3 Generative Probabilistic Models

In this section, we give an overview of the two generative,
latent variable models that we use for modeling ingredient
distributions. Those are Latent Dirichlet Allocation (LDA)
and Deep Belief Networks (DBN).

3.1 Latent Dirichlet Allocation

LDA is a generalization of the earlier Probabilistic Latent Se-
mantic Analysis (PLSA) [Hofmann, 2001]. Both are well-
known latent variable models for high dimensional count
data, especially text in a bag-of-words representation. In this
representation, D documents are each represented as a vec-
tor of counts with W components, where W is the number
of words in the vocabulary. Each document j in the corpus
is modeled as a mixture over K topics, and each topic k is
a distribution over the vocabulary of W words. Each topic,
@, is drawn from a Dirichlet distribution with parameter 7,
while each document’s mixture, ¢, is sampled from a Dirich-
let with parameter . For each token ¢ in the corpus, a topic
assignment z; is sampled from 6,4,, and the specific word z;
is drawn from ¢.,. The generative process is thus:

Ok ~ Dla]  Guwk ~ Dln]

Exact inference (i.e. computing the posterior probability
over the hidden variables) for this model is intractable [Blei et
al., 2003] and thus a variety of approximate algorihtms have
been developed. Ignoring « and 1 and treating 0; and ¢, as
parameters, we obtain the PLSA model, and maximum likeli-
hood (ML) estimation over 0; and ¢, directly corresponds
to PLSA’s Expectation-Maximization (EM) algorithm.

Starting from the form of log-likelihood,
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we obtain the parameter updates via standard EM derivation:
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These updates can be rewritten by defining V.1 = P(z =
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word type w in document j, Ny = Zj NuwjYwiks Nej =
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Plugging these expressions back into the one for the poste-
rior in Equation 1, we arrive at the update,

Ny N
N,

where the constant N; is absorbed into the normalization.
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3.2 Deep Learning

Since no exact inference is possible in LDA and PLSA, they
have to resort to slow or inaccurate approximations to com-
pute the posterior distribution over topics. This makes it diffi-
cult to fit the models to data. In addition, there are limitations
on the types of underlying structure that can be represented
efficiently by a single layer of hidden variables.

To that end, Deep Belief Networks have been introduced in
[Hinton et al., 2006]. DBNSs are generative probabilistic net-
works, composed of multiple layers of latent variables, which
typically have binary values. They are usually represented by
Restricted Boltzmann Machines (RBM) [Ackley et al., 1985]
at each layer. The layers of visible and hidden units are con-
nected by a matrix of symmetrically weighted connections,
optimized dring the learning phase.

Given an observed word count vector v and hidden topic
features h, let v € {1,...,W}V, where W is the dictionary
size and U is the document size, and let h € {0, 1} be binary
stochastic hidden topic features. Let V be a W x U observed
binary matrix with v = 1 if visible unit u takes on w'"
value. The energy of the state {V, h} is defined as follows:
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where {M, a,b} are the model parameters: M is a sym-
metric interaction term between visible unit « that takes on
values w, and hidden feature f; b} is the bias of unit u that
takes on value w, and a5 is the bias of hidden feature f. The
probability that the model assigns to a visible binary matrix
Vis:

1
P(V)=- Zhj exp(—E(V, h)), (©6)
where Z is the partition function or normalizing constant:
Z =Y exp(—E(V,h)) (7)
V h
The conditional distributions are given by softmax and logis-
tic functions:
exp(byy + 37—y hy M)
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LatinAmerican (5.16%)
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EasternEuropean (0.67%)
African (0.62%)
NorthernEuropean (0.44%)

Figure 1: Visualization of ingredient space - a mapping to 2 dimensions using t-SNE. Different cuisines are represented by
different markers. For each cuisine, the number in parentheses indicates the percentage of recipes that it covers in the dataset.
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In document retrieval, a separate RBM is created for each
document, and there are as many softmax units as there are
words in the document. All the softmax units can share the
same set of weights, connecting them to binary hidden units.
Given a collection of N documents {V,,}N_, the derivative

of the log-likelihood w.r.t. parameters M takes the form:
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where Ep, ., [-] denotes an expectation w.r.t. the data distri-
bution Pyq(h, V) = p(h|V)Pyaia(V), With Pyaia(V) =
+ 3, 8(V — V,,) representing the empirical distribution,
and Ep_ . []is an expectation w.r.t. the distribution defined
by the model. Exact maximum likelihood learning in this
model is intractable, and learning is usually done by follow-
ing an approximation to the gradient of a different objective

function, a process called contrastive divergence.

4 Learning recipe ingredient space
4.1 Dataset

In this work, we aim to discover relationships, whether ex-
plicit or implicit, that may exist between different recipe vec-
tors. For the preliminary experiments, we use the recipe col-
lection of [Ahn et al., 2011], which comes with more than

56000 recipes and 381 unique ingredients. The data was ac-
quired by crawling three large recipe depositories, two Amer-
ican (allrecipes.com, epicuirous.com) and one Korean (menu-
pan.com) (for parsing details, please see [Ahn er al., 2011]).
The recipes in the dataset are represented as ingredient lists
only; therefore, we only consider the presence or absence of
individual ingredients at this stage.

4.2 Cuisine mapping

To visualize the data and obtain some insight into its struc-
ture, we use the whole recipe corpus together with cuisine
labels that are supplied with it. We utilize the technique of t-
Distributed Stochastic Neighbor Embedding [van der Maaten
and Hinton, 2008], which has shown promising results in vi-
sualizing the structure of high-dimensional data. Figure 1
shows a mapping of the ingredient space to different cuisines
in two dimensions.

As can be seen from the figure, different cuisines are not
equally represented in the dataset. In fact, North American
recipes account for almost 3/4 of all the data. Nevertheless,
certain conclusions can still be drawn even from this biased
collection:

e South European, Latin American and East Asian recipes
constitute very distinct dish groups;

e the above groups are nevertheless close to each other in
the ingredient space;

e Asian cuisines (East, South and South East ones) are all
connected into a separate cluster;
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Figure 2: Latent Dirichlet Allocation. (a) Spatial visualization of 6 LDA topics. (b) Zoomed-in view of the two overlapping

topics on the left, showing two different bases containing meat.

e Western European and North American groups cover
the largest variety in ingredient space, overlapping with
all other cuisines (although this effect is probably at-
tributable to the bias in recipe distribution);

e there is a small group of Latin American dishes that
is effectively closer to East Asian and South European
cuisines than the Latin American one; same is true for a
small group of South European dishes farther away from
its base and closer to the North American tradition;

e Middle Eastern dishes sit between South European ones
and East Asian ones;

e Eastern European dishes overlap with South European
and North American ones; etc.

Therefore, different cuisines, which are essentially human
constructs, indeed form distinct groupings in the ingredient
space. This is observable, in only two dimensions, even when
recipes are reduced to ingredient lists and only the ingredient
presence/absence is considered.

4.3 Factor analysis

Latent variable models effectively project the data to a lower-
dimensional manifold. However, the number of latent vari-
ables in such cases is not immediately apparent. Although
many techniques exist for learning the intrinsic data dimen-
sionality, most of them are very unstable, and we resort to
an experiment with Factor analysis. The performance over
different number of factors gives an indication of the number
of latent variables for use in other models, such as LDA. For
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Figure 3: Factor analysis: log-likelihood vs. number of fac-
tors/dimensions used.

this purpose, we use the Matlab Toolbox for Dimensionality
Reduction by Laurens van der Maaten?.

We split the data randomly into two halves, one used as the
training set and the other as the evaluation set. For each dif-
ferent dimensionality, we learn the factor analysis mapping
from the training data and compute the corresponding log-
likelihood. That same mapping is then applied to the evalua-
tion set, giving another log-likelihood value. This procedure
is repeated for the number of factors ranging from 2 to 100,
with a step of 5. The results are given in Figure 3, showing
the log-likelihood leveling up after approximately 60 factors.

http://homepage.tudelft.nl/19949/Matlab_
Toolbox_for_Dimensionality_Reduction.html



Figure 4: Ten new recipes sampled from the learned distribu-
tion given by a 3-level DBN.

4.4 Latent ingredient bases

Our goal is to analyze existing ingredient space and gener-
ate novel ingredient combinatons based on the learned mod-
els. We use LDA to project our highly-dimensional ingredient
space to a smaller number of topics (i.e. ingredient bases) and
then observe whether these bases make sense and how they
are distributed. Since 60 or so dimensions, as given by factor
analysis, would result in a cluttered figure, for visualization
purposes we project to 6 topics only. The hyperparameters on
the Dirichlet priors are set to « = 50/K and n = 200/W:
changing their values does not influence the results. We use
the LDA package of [Griffiths and Steyvers, 2004] and show
the results in Figure 2.

The figure shows the main ingredient bases maximally
spaced apart on the horizontal axis: savory ones to the left
and sweet ones to the right of the map. In addition to two
“meat bases” on the left side, there is a base containing typi-
cal South-East Asian ingredients on top, and another one with
common South European ingredients at the bottom of the fig-
ure. The ingredient base with common additives that affect
acidity or fluidity of a dish is placed in the center of the map.
The visualization implicitly shows the measure of how fre-
quently certain (sets of) ingredients are used together.

4.5 Generating novel ingredient combinations

If we learn a generative probabilistic model from the ingredi-
ent data, we can also randomly sample it and observe the re-
sulting ingredient combinations. These combinations will not
necessarily correspond to those observed in the recipe corpus,
but may represent completely novel varieties. In fact, one can
imagine different parameter settings resulting in varying ‘lev-
els of combination novelty’.

For this purpose, we use a 3-layer DBN with an RBM at
each layer. Beside the learning rate and the weight decay
in learning the RBMs, which we fix at default values, the
only additional parameters are the number of hidden nodes in
each layer. In experiments presented here, we use 500 hidden
variables in the first and second layer, and 2000 in the third.
Changing the “network shape” by modifying these numbers
can lead to somewhat different results, giving more exotic
combinations, longer ingredient lists, etc.

We learn the network model and then sample the result-
ing distribution for 10 recipes. A color-map representation of
these recipes is shown in Figure 4. In the figure, rows repre-
sent the 10 recipes, columns represent 381 ingredient dimen-
sions, and color indicates probability of ingredient presence
(blue = unlikely, red = very likely). Ingredients more to the
left are those encountered earlier in the dataset, whereas more
exotic ones are likely to be present at right. For example, the
ingredient most used in the generated recipes, and visible as
the connected strip at far left, is butter. Recipe contents are
given in full in Table 4.5.

A quick inspection of the combinations in the table shows
sensible pairings. Ingredients usually used for cakes are com-
bined with fruits or nuts, whereas meat and seafood usually
come with vegetables or herbs. Even some more unexpected
combinations, e.g. involving fruits and vinegar, or fruits,
meat and nuts, are in fact common in African cuisine. An-
other thing to note is that the number of ingredients is mostly
between 10 and 20, out of the possible 381. These lists can
be further constrained by increasing the threshold on the in-
gredient probability given by the network.

5 Conclusions

In this work, we demonstrate some preliminary experiments
attempting to learn the ingredient space using machine learn-
ing approaches. To that end, we focus only on the ingredient
list of each recipe and analyze it in a bag-of-words fashion.
Beside exploiting this information to e.g. provide ingredi-
ent substitutions or obtain dish similarity networks, we aim
to automatically generate novel ingredient combinations. We
use Latent Dirichlet Allocation to learn and visualize latent
ingredient bases, whereas novel ingredient combinations are
generated using Deep Belief Networks. Preliminary results
show the promise of this approach, resulting in sensible in-
gredient bases as well as novel ingredient combinations.

Future work will focus on the gathering of a less biased
dataset and on recipe completion under the user-specified
constraints.  Extensions are likely to include ingredient
amounts, as well as better visualization of ingredient and dish
relationships.
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